
CR-189411

SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-006

PROCEEDINGS
OF THE

NINETEENTH ANNUAL
SOFTWARE ENGINEERING

WORKSHOP

DECEMBER 1994

National Aeronautics and
Space Administration

Godderd Space Right Center
Greenbelt, Maryland 20771

(NASA-CR-189411) PROCEEDINGS CF

THE 19TH ANNUAL SCFTWARE

ENGINEERING WORKSHOP (NASA.

Goddard Space Fliqht Center) 364 P

G3/61

N95-31234

--THRU--

N95-31252

Unclas

0053510

Proceedings of the Nineteenth Annual
Software Engineering Workshop

November 30-December l, 1994

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASAJGSFC) and
created to investigate the effectiveness of software engineering technologies when applied
to the development of applications software. The SEL was created in 1976 and has three

primary organizational members:

NASA/GSFC, Software Engineering Branch

The University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effects of various methodologies, tools, and models on

this process; and (3) to identify and then to apply successful development practices. The
activities, findings, and recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of reports that includes this document.

The SEL is accessible on the World Wide Web at

http://groucho.gsfc.nasa.gov/Code_550/SEL_hp.html

Single copies of this document may be obtained by writing to:

Software Engineering Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

PRECEDING PAQE BLANK NOT FILMF.._

SEW Proceedings iii SEL-94-006

The views and findings expressed

herein are those of the authors and

presenters and do not necessarily

represent the views, estimates, or

policies of the SEL. All material

herein is reprinted as submitted by

authors and presenters, who are solely

responsible for compliance with any

relevant copyright, patent, or other

proprietary restrictions.

SEW Proceedings "N SEL-93-003

CONTENTS

Materials for each session include the viewgraphs

presented at the workshop and a supporting paper
submitted for inclusion in these Proceedings.

Page

1

f_ 3

_-11

35

7

:H,.,, 77

,- 79
2)

/_ 91

_';j, _- 113

' 115

•-<_ 127
6

Session 1: The Software Engineering Laboratory

Changes and Challenges in the Software Engineering Laboratory

R. Pajerski, NASA/Goddard

Domain Analysis for the Reuse of Software Development Experiences
V. Basili, L. Briand, and W. Thomas, University of Maryland

Building an Experience Factory for Maintenance
J. Valett, NASA/Goddard, S. Condon, Computer Sciences Corporation,

L. Briand, Y. Kim, and V. Basili, University of Maryland

Closing the Loop on Improvement: Packaging Experience in the

Software Engineering Laboratory
S. Waligora, L. Landis, and J. Doland, Computer Sciences Corporation

Session 2: Process
Discussant: J. Liu, Computer Sciences Corporation

Process Maturity Progress at Motorola Cellular Systems Division
A. Willey, K. Dobson, R. Borgstahl, and M. Criscione, Motorola

The Personal Software Process: Downscaling the Factory ?

D. Roy, Software Engineering Institute

Session 3: Certification
Discussant: M. Zelkowitz, University of Maryland

Applying Program Comprehension Techniques to Improve Software Inspections
S. Rifkin, Master Systems Inc., and L. Deimel

An Experiment to Assess the Cost-Benefits of Code Inspections in Large-Scale

Software Development
H. Siy and A. Porter, University of Maryland, C. Toman and L. G. Votta, AT&T
Bell Laboratories

A Process Improvement Model for Software Verification and Validation
J. Callahan and G. Sabolish, NASA Independent Software Verification and

Validation Facility

SEW Proceedings v SEL-94-006

CONTENTS (cont'd)

Page

/'p

//

_ .i_, ,

171

173

191

211

229

231

249

265

281

/ _ 283

297

315

Session 4: Experience Reports
Discussant: A. Porter, University of Maryland

Leveraging Object-Oriented Development at Ames
G. Wenneson and J. Connell, Sterling Software

Lessons Learned in an Organization Transitioning to an Open Systems Environment
D. Boland, D. Green, and W. Steger, Computer Sciences Corporation

Lessons Learned Deploying Software Estimation Technology and Tools
N. Panlilio-Yap and D. Ho, International Business Machines Canada Corporation

Session 5: Reliability and Safety
Discussant: S. Green, NASA/Goddard

Using Formal Methods for Requirements Analysis of Critical Spacecraft Software
R. Lutz, Jet Propulsion Laboratory, and Y. Ampo, NEC Corporation

Experimental Control in Software Reliability Certification
C. Trammell and J. Poore, University of Tennessee

Generalized Implementation of Software Safety Policies
J. Knight and K. Wika, University of Virginia

Session 6: Measurement

Discussant: G. Heller, Computer Sciences Corporation

A Quantitative Comparison of Corrective and Perfective Maintenance
J. Henry and J. Cain, East Tennessee State University

Does Software Design Complexity Affect Maintenance Effort?
C. Lott, University of Kaiserslautern, and A. Epping, Coopers & Lybrand

Profile of Software Engineering Within NASA
C. Sinclair, Science Applications International Corporation, and K. Jeletic,
NASAJGoddard

333 Appendix A-Workshop Attendees

341 Appendix B-Standard Bibliography of SEL Literature

SEW Proceedings vi SEL-93-003

Session 1: The Software Engineering Laboratory

Changes and Challenges in the Software Engineering Laboratory
Rose Pajerski, NASA/Goddard

Domain Analysis for the Reuse of Software Development Experiences
Vic Basili, University of Maryland

Building an Experience Factory for Maintenance
Jon Valett, NASA/Goddard

Closing the Loop on Improvement: Packaging Experience in the
Software Engineering Laboratory

Sharon Waligora, Computer Sciences Corporation

SEL-94-006
SEW Proceedings 1

SEW Proceedings 2 SEL-94-006

N95- 31235

Changes and Challenges in the Software
Engineering Laboratory

Rose Pajerski

Software Engineering Branch, Code 552

NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

'//

Background

Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to

understanding and improving the way in which one NASA organization, the Flight

Dynamics Division (FDD), develops, maintains, and manages complex flight dynamics

systems. The SEL is composed of three member organizations: NASA/GSFC, the

University of Maryland, and Computer Sciences Corporation. During the past 18 years,

the SEL's overall goal has remained the same: to improve the FDD's soitware products

and processes in a measured manner. This requires that each development and

maintenance effort be viewed, in part, as a SEL experiment which examines a specific

technology or builds a model of interest for use on subsequent efforts. The SEL has

undertaken many technology studies while developing operational support systems for

numerous NASA spacecraft missions.

Software Improvement Approach

The SEL's basic approach toward software process improvement is to first understand

and characterize the process and product as they exist to establish a local baseline. Only

then can new technologies be introduced and assessed (phase two) with regard to both

process changes and product impacts. Typically, several studies/assessments are in

progress at any one time, each with a duration of approximately 1-3 years. The third

phase of the SEL approach (packaging) synthesizes the results of the first two phases

and feeds them back into the cycle to assist soft'ware development on subsequent

projects. Packages include products such as process tailoring guidelines, training courses,

tools, and guidebooks. The SEL's process improvement approach has proven very

effective in the FDD, with the organization's software product showing substantial

improvements in error rates, reuse, and cycle time; and it has been recognized throughout

the so_vare engineering community. In 1994, the SEL received the IEEE Computer

Sociely Award for Software Process Achievement and a Federal Technology leadership

Award for its application of these innovative concepts in a production environment.

SEL Operational Changes

The SEL's development and maintenance environments differ somewhat in their

characteristics. On development efforts, the languages and processors used reflect a

SEW Proceedings 3 SEL-94-006

movement toward workstation-based systems: languages are FORTRAN (70%), Ada

(15%), and C (15%) spread over 65% mainframe systems and 35% workstation systems.

Maintenance efforts are dominated by FORTRAN with 85% usage, followed by Ada

(10%), with the remaining systems implemented in a variety of languages, such as

assembler and Pascal. Platforms of systems under maintenance are predominantly

mainframes (80%), with the remaining 20% maintained on workstation-based processors.

Based in part on these environmental factors, and on recent plans for changes in this

environment, several significant paradigm shifts occurred in the SEL's operation. This

has led to changes in three areas:

• Organizational goals

• Operations and development environments

• Resources

Change #1: Organizational Goals

From its inception, the SEL has focused on both increasing software reliability and

reducing life cycle costs. Over the past 8 years, the SEL has achieved measured gains in

both areas: reliability of delivered systems has increased threefold and current mission

support costs are half that of older systems. However, with "time to deploy" pressure

increasing, SEL goals now emphasize development time as well as cost. In response to

this, the FDD, with the SEL's support, is expanding development of high-reuse,

generalized systems to encompass more flight dynamics application areas. The SEL is

investigating a variety of joint team development processes as well as cataloguing and

assessing existing maintenance processes to identify potential time-savers.

Change #2: Operations and Development Environments

The change here---the transition from mainframes to workstations--has already been

discussed. In support of this trend, the SEL provides historical data on completed

system rehosting activities for management planning of subsequent efforts. Data

collection and measurement activities are also being revisited to determine whether these

procedures must be modified. In addition, new computer-aided software engineering

(CASE) tools are being investigated for use on the available workstations.

Change #3: Resources

From 1989 through 1994, resources increased by about 10% per year, enabling the SEL to

undertake several NASA-wide initiatives: developing guidebooks and assessment reports

on specialty topics such as measurement, NASA-wide software characteristics, domain

identification, and technology transfer activities. These experience exchanges facilitated

the spread of SEL concepts not only throughout NASA, but beyond, to other government

organizations and industry. However, resources for 1995 have been significantly reduced,

prompting a reevaluation of both internal and external efforts. The SEL has decided to

SEW Proceedings 4 S EL-94-006

focus external outreach efforts on similar domains within NASA and to investigate new

processes likely to provide direct cost benefits in the FDD production environment.

Impact and Observations

Given the above changes, what are the lessons?

• The first experience lesson is that new process technologies must be integrated within

the existing process framework. The SEL approach of understanding, assessing, and

packaging is effective at instilling large, as well as small, process changes because it

yields a fundamental understanding of process and product.

• Next, the move to workstations will create a tighter link between process tools,

measurement, and process analysis. This should assist SEL analysts in providing

more timely feedback to development groups.

• Last, the importance of understanding sol.are domains has been reemphasized in the

SEL's work. An ability to compare and contrast domains is critical for technology

transfer and tailoring guidance activities.

SEL-94-006
SEW Proceedings 5

SOFTWARE ENGINEERING

LABORATORY (SEL)

C649 003

Ct_900_

THE SEL FROM 1976 - 1994

• GOALS

- UNDERSTAND THE SOFTWARE PROCESS IN A PRODUCTION
ENVIRONMENT

- DETERMINE IMPACT OF AVAILABLE TECHNOLGIES

- INFUSE IDENTIFIED/REDEFINED METHODS INTO DEVELOPMENT
PROCESS

• APPROACH

- APPLY TECHNOLOGIES AND EXTRACT DETAILED DATA IN
PRODUCTION ENVIRONMENT (EXPERIMENT)

- MEASURE IMPACT (COST, QUALITY, DEVELOPMENT TIME,...)

- PACKAGE RESULTS (STANDARDS, PROCESSES,TRAINING...)

SEW Proceedings 6 SEL-94-006

SEL PROCESS IMPROVEMENT APPROACH

PACKAGING

. s oo os
ASSESSING • TAILOR PROCESSES

9.

UNDERSTANDING

ILl
...I
13-

ILl

TIME

DETERMINE EFFECTIVE IMPROVEMENTS

• WILL JOINT TEAM APPROACHES HELP?
• WILL FORMAL METHODS IMPROVE RELIABILITY?
• WILL CASE CUT COST?

KNOW YOUR SOFTWARE BUSINESS

• WHAT ARE MY SOFTWARE CHARACTERISITICS?
• WHAT PROCESS DO I USE?
• WHAT ARE MY GOALS

SEL PRODUCTION ENVIRONMENT

SOFTWARE CHARACTERISTICS: SCIENTIFIC, GROUND BASED,
INTERACTIVE

LANGUAGE

DEVELOPMENT MAINTENANCE

70% FORTRAN 85% FORTRAN
15% Ada 10% Ada
15% C 5% OTHER

PROCESSORS 65% MAINFRAME
35% WORKSTATION

80% MAINFRAME

20% WORKSTATION

PER PROJECT: PER RELEASE:
DURATION 12-30 MONTHS 3-12 MONTHS

EFFORT 10-25 STAFF YEARS 1-5 STAFF YEARS
SIZE 100K-300K SLOC WIDE VARIATION

C649.00_

SEL-94-006
SEW Proceedings 7

1994 -- 1995 CHALLENGES

• ORGANIZATIONAL GOALS

• OPERATIONS AND DEVELOPMENT ENVIRONMENTS

• RESOURCES

C_9_7

CHANGE #1" ORGANIZATIONAL GOALS

C649 0_

PREVIOUS EMPHASIS

ON _
RELIABILITY & COST

CURRENT EMPHASIS
ON

COST & TIME TO DEUVER

• SEL RESPONSE

- EXPAND OBJECT-ORIENTED, GENERAUZED DEVELOPMENT TO
OTHER APPLICATIONS

- ASSESS JOINT DEVELOPMENT PROCESSES WITHIN CURRENT
SEL METHODOLOGY

- UNDERSTAND MAINTENANCE PROCESS/PRODUCT

I ,NTEG_TENEWPROCESSTECHNOLOG,ES
I...... WITHIN .EXISTING _FPAMEW_OR_K ___

SEW Proceedings 8 SEL-94-006

CHANGE #2: OPERATIONS AND

DEVLOPMENT ENVIRON MENTS

C649.009

MAINFRAME
APPLICATIONS

WOR KSTATION
APPLICATIONS

• SEL RESPONSE

- PROVIDE MANAGEMENT SUPPORT FOR "REHOST VS NEW"

DECISIONS

- REVISIT MEASURES AND DATA COLLECTION MECHANISMS

- EXPAND COMPUTER-AIDED SOFTWARE ENGINEERING

(CASE) TECHNOLOGY STUDY

I POTENTIAL EXISTS FOR GREATER INTEGRATION IOF SEL ANALYSIS WITH DEVELOPMENT

CHANGE #3: RESOURCES

GROWING SUPPORT
FOR

EXTERNAL OUTREACH

(RESOURCES INCREASING)

FOCUS

ONINTERNAL NEEDS

(RESOURCES DECREASING)

• SEL RESPONSE

- USE OUR DETAILED PROCESS UNDERSTANDING TO SELECT

TECHNOLOGIES UKELY TO IMPACT COST

- CONTINUE DOMAIN IDENTIFICATION EFFORTS TO FIND "UKE"

DOMAINS FOR EXPERIENCE EXCHANGES

- PROMOTE "SEL-APPROACH" TO GSFC/NASA AREAS (PRIMARY)
AND OTHER ORGANIZATIONS

DOMAIN IS A KEY DRIVER FOR I
SEL EXTERNAL OUTREACH EFFORTS I

C649,0t0

SEL-94-006
SEW Proceedings 9

SEW Proceedings 10 SEL-94-006

N95. 31236

Domain Analysis for the Reuse of Software
Development Experiences1

V. R. Basili*, L. C. Briand**, W. M. Thomas*

* Department of Computer Science
University of Maryland

College Park, MD, 20742
USA

** CRIM

1801 McGill College Avenue
Montreal (Quebec), H3A 2N4

S

/

1. Introduction

We need to be able to learn from past experiences so we can improve our software
processes and products. The Experience Factory is an organizational structure designed to
support and encourage the effective reuse of software experiences [Bas94]. This structure
consists of two organizations which separates project development concerns from

organizational concerns of experience packaging and learning. The experience factory
provides the processes and support for analyzing, packaging and improving the
organization's stored experience. The project organization is structured to reuse this stored
experience in its development efforts. However, a number of questions arise:

• What past experiences are relevant?

• Can they all be used (reused) on our current project?

• How do we take advantage of what has been learned in other parts of the
o gamation?

• How do we take advantage of experience in the world-at-large?

• Can someone else's best practices be used in our organization with confidence?

This paper describes approaches to help answer these questions. We propose both
quantitative and qualitative approaches for effectively reusing software development

experiences.

2. A Framework for Comprehensive Software Reuse

The ability to improve is based upon our ability to build representative models of the
software in our own organization. All experiences (processes, products, and other forms of

knowledge) can be modeled, packaged, and reused. However, an organization's software

This research was in part supported by NASA grant NSG-5123, NSF grant 01-5-24845, and CRIM

SEW Proceedings 11 SEL-94-006

experience models cannot necessarily be used by another organization with different
characteristics. For example, a particular cost model may work very well for small projects,

but not well at all for large projects. Such a model would still be useful to an organization
that develops both small and large projects, even though it could not be used on the
organization's large projects. To build a model useful for our current project, we must use
the experiences drawn from a representative set of projects similar to the characteristics of
the ctme_t project.

The Quality Improvement Paradigm (QIP)[Bas85,Bas94] is an approach for improving the
software process and product that is based upon measurement, packaging, and reuse of
recorded experience. As such, the QIP represents an improvement process that builds
models or packages of our past experiences and allows us to reuse those models/packages
by recognizing when these models are based upon similar contexts, e.g., project and
environmental characteristics, relative to our current project. Briefly, the six steps of the
QIP are:

1) Characterize the current project and environment

2) Set goals for successful performance and improvement

3) Choose processes and methods appropriate for the project

4) Execute the processes and the measurement plan to provide real-time feedback for
corrective action

5) Analyze the data to assess current practices, determine problem areas, and make
recommendations for future projects

6) Package the experience in a form suitable for reuse on subsequent projects

The QIP must allow the packaging of context-specific experience. That is, both the retrieval
(Steps 2 and 3) and storage (Step 6) steps need to provide the identification of the context
in which the experience is useful. Step 1 helps determine this context for the particular
project under study. When a project selects models, processes, etc., (step 3), it must
ensure that the chosen experience is suitable for the project. Thus the experience packaging
(step 6) must include information to allow future projects to determine whether the
experience is relevant for use in their context. The problem is that it is not always an easy
task to determine which experience is relevant to which project contexts. We would like to
reuse the packaged experience if the new project context is "similar" to the projects from
which the experience was obtained.

Basili and Rombach present a comprehensive framework for reuse-oriented software
development [BR91]. Their model for reuse-oriented software development is shown in
Figure 1. It includes a development process model, which is aimed at project development,
and a reuse process model, which enables the reuse of the organization's experiences. The
development process will identify a particular need (e.g., a cost model). The reuse process
model can then fred candidate reusable artifacts (e.g., candidate cost models) from the
experience base, selecting (and adapting if necessary) the one most suitable for the
particular project The artifacts may have originated internally (i.e., was developed entirely
from past projects in the organization, e.g., the recta-model approach to cost estimation
[BB81]), or externally (e.g., the COCOMO cost model [Boe81]). In any event, a
evaluation activity of the reuse process is what determines how well the candidate artifact
meets the needs specified by the development process.

Our focus in this paper is on the selection and evaluation of reusable artifacts. One
approach to do so is to determine "domains" in which a particular experience package may

SEW Proceedings 12 SEL-94-O06

be reusable. Then, by assessing the extent to which a project is a member of the domain,
one can determine whether a given experience package is suitable for that project.

Figure 1: Reuse Oriented Software Development model

3. Experience Domain Analysis

We will use experience domain analysis to refer to identifying domains for which reuse of

project experiences can be effective, i.e., identifying types of projects for which:

• Similar development or maintenance standards may be applied, e.g., systems for

which DoD-Std-2167 is applicable in NASA

Data and models for cost, schedule, and quality are comparable, e.g., projects for
which the productivity can meaningfully be compared within all the branches of
NASA

Once domains have been identified, common processes, standards and databases may be

shared with confidence by various software organizations, e.g., NASA branches within
broader organizational structures such as NASA centers. The problem can be viewed as the

SEL-94-006
SEW Proceedings 13

need to determine whether an experience package developed in one context is likely to be
effective when reused in a new, different context.

Let us introduce a basic set of def'mitions to clarify the concepts to be used:

Definition I: Domain Analysis Goals

The goal(s) of a domain analysis procedure is (are) to assess the feasibility of
reusing or sharing a set of software artifacts within or across organizations, e.g.,
can we use a cost model developed in another organization, based on a different set
of past projects than those of our development organization?

Definition 2: Domains

With respect to a particular domain analysis goal (i.e., a particular artifact to reuse),
domains are "types" of software development projects among which certain
common artifacts may be reused or shared.

Definition 3: Domain Characteristics and Characterization Functions

Domain characteristics represent characteristics that may determine whether or not

one or several artifacts can be reused or shared within or across organizations. The
characterization functions of domains are mappings of projects, described by
characteristics, into domains. For example, in a given organization, large Ada flight
simulators may represent a domain with respect to cost modeling and prediction. In
this case, the project characteristics involved in the domain characterization function

are the project size, the programming language, and the application domain.

It is important to note that for different reuse goals, there are different domains, and as

such, different domain characteristics and characterization functions. In this context, the
first step of domain analysis is to determine the kind(s) of artifacts one wants to reuse. As

an example, someone may want to reuse a cost model or a design inspection procedure
developed in a different development environment.

We present in Table 1 a general taxonomy of software artifacts that can conceivably be
reused (or shared) within or across organizations. It is important to note that the taxonomy
presented here encompasses more than just software products (the usual realm of domain
analysis). Also, one could further refine the taxonomy within each specific organization.

Certain kinds of artifacts are more likely to be reusable or sharable than others because they
naturally have a broader realm of application. For example, many high-level concepts are
universally applicable, e.g., tracking project progress across the development life cycle
through data collection helps monitor the schedule and resource consumption of the system
being developed. Other kinds of artifacts may have a somewhat more restricted realm of

application, e.g., a waterfall process model is applicable as long as the application domain
is well known and the solution space is reasonably understood. Also, some kinds of

artifact have a very narrow realm of application, e.g., artifacts related to application domain
specific programming languages and operating systems (e.g., a real-time UNIX variant for
real-time applications).

SEW Proceedings 14 SEL-94-006

Data/Models

Descriptive models
Predictive models

Cost models

Schedule models

Reliability growth models
Error models

Chan_e models

Qnzlity evaluation models
Lessons learned

Raw dam

Standards/Processes

Requirements

Specifications

Design
Coding

Teslin_

Inspections

Change management

Products

R, xluirements
S e,cifications

Architecture

Design
Code

Test plans/data

Table 1: Taxonomy of Reusable Software Artifacts

After establishing organizational goals for domain analysis, it is necessary to examine the
characteristics of the organization and the projects to help identify appropriate domains. For
example, if one wants to reuse a cost model for a new project, the following questions
become relevant:

• Are the products developed by the new project comparable to the ones on which the
cost model is based ?

• Is the development process similar?

• If not, are the differences taken into account in the model?

• Can the model be imported to this new environment?

The issue is now to determine if the new project belongs to the "same domain" as the

projects on which the cost model is built. In order to do so, the characteristics of these
projects need to be considered and differences across projects need to be analyzed.
Similarly, if one tries to reuse a design inspection process, the following questions are
relevant: is staff training sufficient on the new project? Do budget and time constraints
allow for the use of such inspections? Is the inspection process thorough enough for the

new project reliability requirements?

Table 2 shows a general taxonomy of potentially relevant project characteristics to consider
when reusing or sharing software artifacts. The characteristics are grouped according in
three broad classes, product, process, and personnel. The table is not intended to be a
complete description of all relevant project characteristics, but rather its intent is to provide
some guidance as to the characteristics that should be considered. In some environments
certain characteristics may not be relevant, and others that are not currently in this table will
be. Each organization needs to determine which ones are the most important.

SEL-94-006
SEW Proceedings 15

Product

Requirements stability
Concurrent Software

Memory constraints
Size

User interface complexity

Programming language(s)
Safety/Reliability

Lifetime requirements

Product quality

Process

Lifecycle/Process model
Process conformance

Project environment
Schedule constraints

Budget constraints

Productivity

Product reliability

Personnel

Motivation
F.,ducation

Experiencefrrainin_:

• Application Do_mairl
• Process

• Platform

• language

Dev. te__rnorganiT-qfion

Table 2: Potential Characteristics Affecting Reuse

In the following sections we discuss two techniques to support experience domain

analysis, one based on quantitative historical data, and the other based on qualitative expert
opinion. Both techniques will provide models that can be used to assess the risk of reusing
a particular experience package in a new context.

4. A Quantitative Approach

With sufficient historical data, one can use automated techniques to partition the set of
project contexts into domains relative to various levels of reuse effectiveness for a given
experience package. The goal of partitioning here is to maximize the internal consistency of
each partition with respect to the level of effectiveness. In other words, we want to group
projects according to common characteristics that have a visible and significant impact on
effectiveness.

Such partition algorithms are based on the multivariate analysis of historical data describing
the contexts in which the experience package was applied and the effectiveness of its use.

For example, Classification Trees [SP88] or Optimized Set Reduction [BBH93, BBT92]
are possible techniques. The measured effectiveness is the dependent variable and the
explanatory variables of the domain prediction model are derived from the collection of

project characteristics (Table 2) possibly influencing the reuse of the experience package.

As an example, suppose you want to know whether you can use the inspection
methodology I on project P. The necessary steps for answering that question are as
follows:

• Determine potentially relevant characteristics (or factors) for reusing/, e.g., project
size, personnel training, specification formality, etc.

• Determine the measure of effectiveness to be used, e.g., assume the rate of error

detection as the measure of effectiveness of L This is used as the dependent variable
by the modeling techniques mentioned above.

• Characterize P in terms of the relevant characteristics, e.g., the project is large and
the team had extensive training.

SEW Proceedings 16 SEL-94-006

• Gather data from the experience base characterizing past experience with I in terms

of the project characteristics and the actual effectiveness. For instance, we may

gather data about past inspections that have used methodology L

• Construct a domain prediction model with respect to I based on data gathered in the

previous step. Then, one can use the model to determine to which domain (i.e.,
partition) project P belongs. The expected effectiveness of I on project P is
computed based on the specific domain effectiveness distribution.

Table 3 shows, for each past project with experience with I (A, B, C, D, etc.), the recorded
effectiveness of I on the project, and a collection of characteristics relevant to the effective
reuse of I (Size, the amount of training, the formality of the specifications). The last row in
the table shows the question that need to be answered for the new project P: How effective

is I likely to be if it is applied to project P?

Pro ect Det. Rate KSLOC Training Formality,

35 Low Informal

10 High Formal
150 Medium Informal

40 High Formal

A

B

C

D

.°.

P

.60

.80

.50
.75

99
! I

20-30 Hi _h Formal

Table 3: Examples for a Quantitative Approach

From such a table, an example of domain characterization that might be constructed by

performing a partition of the set of past projects (more formally: a partition of the space
defined by the three project characteristics):

(KSLOC < 50) & (Training=High) => It(Detection Rate) = 75%

This logical implication indicates that for projects with less than 50 KSLOC and a high
level of training, the detection rate is expected to be 75 percent

When a decision boundary is to be used (e.g., if the level of reuse effectiveness is above

75% of the I's original effectiveness, one reuses I), an alternative form of model is more

adequate:

CKSLOC < 50) & (Training=High) => Probability(Detection Rate > 75%) = 0.9

Here the logical implication indicates that for relatively small projects (less than 50
KSLOC) where there is a high level of training, the detection rate with I is likely to be

greater than 75 percent.

To evaluate the reusability of some experience packages, a quantitative approach to domain

analysis is feasible, mathematically tractable, and automatable. Unfortunately, there are a
number of practical limitations to such an approach. It is not likely to be effective when:

• There is not sufficient data on past experience

• The effectiveness of muse is not easily measured

• There is significant uncertainty in the characterization of the new project.
In these cases we may wish to resort to a more heuristic, expert opinion based approach.

This is the topic of the next section.

SEL-94-006
SEW Proceedings 17

5. A Qualitative Approach

Given the practical limitations to the quantitative approach, a qualitative solution based on
expert opinion is needed. As with the quantitative solution, the basic assumption in this
approach is mat an experience package will be reusable (with similar effectiveness) in a

new context if the new context is "similar" to the old context. Rather than def'ming
"similarity" through analysis of historical data, the approach here is to capture and package
expert opinion as to what makes an artifact "similar." As we previously noted, what the
notion of similarity depends upon the reuse objective. For example, two projects may have
widely different cost characteristics (e.g., in the COCOMO classification, one being
organic and one embedded) but have very similar error characteristics.

When identifying domains without the support of objective data, one can use several
ordinal evaluation scales to determine to what extent a particular characteristic is relevant
and usable given a specific reuse goal. These ordinal scales help the analyst introduce some
rigor into the way the domain identification is conducted. We propose several evaluation

scales that appear to be of importance. The first one determines how relevant is a project
characteristic to the use of a given artifact, e.g., is requirements instability a characteristic
that can affect the usability of a cost model? A second scale captures the extent to which a
characteristic is measurable, e.g., can we measure requirement instability? Other scales can
be defined to capture the sensitivity of the metric capturing a domain characteristic, i.e.,
whether or not a significant variation of the characteristic always translates into a significant
variation of the metric, and the accuracy of the information collected about the domain
characteristics.

These evaluation scales should be used in this order: (1) determine whether the project
characteristic is relevant, (2) assess how well it can be measured, and (3) determine how
sensitive and accurate measurement is. If a characteristic is not relevant, then one need not

be concerned with whether and how it can be measured. We will define only a relevancy
evaluation scale and a measurability evaluation scale here. The two other scales are more
sophisticated and beyond the scope of this document.

The relevance scale is intended to indicate the degree to which a characteristic is important
with respect to the effective reuse of a particular artifact. The following ordinal scale can be
used for this purpose:

1: Not relevant, the characteristic should not affect the use of the artifact of interest in

any way, e.g., application domain should not have any effect on the use of code
inspections.

2: Relevant only under unusual circumstances, e.g., application domain specific
programming language generate the need for application domain specific coding
standards whereas, in the general case, the characteristic application domain does
not usually affect the usability of coding standards.

3" It is clearly a relevant characteristic but the artifact of interest can, to some extent,
be adjusted so it can be used despite differences in the value. For example, size has
an effect on the use of a cost model, i.e., very large projects show lower

productivity. Assume that an organization occasionally developing large scale
projects wants to reuse the cost model of an organization developing mostly
medium-size projects. In this case, the cost model may be calibrated for very large
projects. As another example, consider the Cleanroom process [D92]. If not

SEW Proceedings 18 SEL-94-006

4"

5"

enough failure data are available during the test phase, the Cleanroom process may
be used without its reliability modeling part.

It is clearly a relevant characteristic and if a project does not have the fight
characteristic value, the use of the considered artifact is likely to be inefficient. For

example, it may not be cost-effective to use specification standards that require
formal specifications in a straightforward data processing application domain.
Moreover, the artifact is likely to be difficult to tailor.

It is clearly a relevant characteristic and if a project does not have the fight
characteristic value, the use of the considered artifact is likely to generate a major

failure. For example, if the developed system requires real-time responses to events
occurring in its operational environment, requirement analysis and design

approaches from a non real-time development environment cannot be used.
Moreover, the artifact is likely to be very difficult to tailor.

There are other metrics that are of interest to one interested in the reusability of an artifact.

Some of the characteristics may be quite relevant but very difficult to measure. As such,
there may be increased risk in the assessment of the reusability of an artifact due to the
uncertainty (due to the difficulty in measurement) in the characterization. A measurability
scale for the characteristics can be def'med as follows:

1: There is no known measure of the characteristic, e.g., development team motivation
and morale are hard to measure.

2" There are only indirect measures of the characteristic available, e.g., state transition

diagram of a user interface can be measured to offer an approximate measure of
user interface complexity.

3: There are one or more direct measures of the characteristic, e.g., size can be

measured on a ratio scale, programming language on a nominal scale.

Two other issues have to be considered when a project characteristic is to be used to
differentiate domains. First, we cannot ensure that every significant variation of the

characteristic is going to be captured by the measurement, i.e., that the metric is sensitive
enough. As a consequence, it may be hard in some cases to tell whether or not two projects
are actually in the same domain. Second, a metric may be inherently inaccurate in capturing
a characteristic due to its associated data collection process. These two issues should

always be considered.

Table 4 shows an example in which we assess the relevance of a subset of the
characteristics listed in the taxonomy of domain analysis characteristics, i.e., the product
characteristics. Their relevance is considered for the reuse of testing standards, i.e.,

standards, processes, and procedures def'ming unit, system, and acceptance test.

Product [RelevanceCharacteristic Score

SEL-94-006
SEW Proceedings 19

Unstable

Requirements
Concurrent

Software

Memory
Constraints

User Interface

Complexity
Reliability/Safety

Requirements
Long Lifetime

Requirements
Product

Size

Programming
language

Intermediate

Product Quality
Product

Reliability

3

4

3

4

5

3

4

4

3

Table 4: Product Characteristic Relevancy Scores for the Reuse of Testing Standards

The following paragraphs provide some justification for the relevancy scores assigned for
the reuse of testing standards. Detailed justification and explanations about scores for other
artifacts will be provided in a subsequent report.

• Unstable or partially undetermined requirements:

There should be a degree of stability achieved by the start of testing. However,
unstable requirements will have a great impact on test planning, and if there are

many changes occurring during the test phase, testing will be impacted. Some ways
to avoid some of these problems is to have more rigorous inspections, focusing on
identifying inconsistencies, and to carefully partition testing activities so that a
somewhat stable base is verified, and the impact of the instability is lessened Also,

with the large number of changes late in development, better support for regression
test is required. A score of 3 is assigned.

• Concurrent Software:

In the presence of RT constraints, in addition to verifying functional correctness, it
is also needed to verify the necessary performance characteristics of critical threads.

These performance requirements must be validated early to allow more options in
rectifying problems and to lessen the chance of cost and budget overruns if the
requirements are not being met. Also, it would be inefficient for a project that does

have such constraints to apply a process that includes early identification and testing
of critical threads. A score of 4 is assigned.

• Memory constraints:

As with real-time constraints, problems in meeting memory constraints should be
identified early. However, it is typically easier to verify memory use than

SEW Proceedings 20 SEL-94-006

pcrformanc._ characteristics. It is likely that a standard could be adapted to provide
for an earlier verification of the critical memory use. A score of 3 is assigned.

• User interface complexity:

A user interface with a large number of states requires significant verification effort.

Certain techniques that are well suited to a smaller number of states (e.g., to.st every
operation in every state) do not scale well to applications with large, complex
interfaces. A score of 4 is assigned.

• High Reliability/Safety Requirements:

In safety-critical software, co_ectness of the implementation is a primary concern.
Approaches such as formal verification, fault-tree analyses, and extensive testing
are often necessary. A score of 5 is assigned.

• Long Lifetime Requirements:

Testing should be more comprehensive for long-lived software. The goal is not
only to ensure current operational suitability, but to allow for operation long after
development. With the expectation of a number of changes over the product
lifetime, it becomes much more important that the delivered product be thoroughly
tested. For example, to ensure a better test coverage, procedures can be put in place

to require testing of all paths. A score of 3 is assigned.

• Size:

Certain techniques that are well suited to small applications do not scale well to

large applications. More automation and support is likely to be needed. For
example, exhaustive path-testing may be useful in smaller applications, but in large
applications it is not feasible due to the significant resources that would be required.
A score of 4 is assigned.

• Programming Language:

No impact.

• Product quality:

A lesser quality product may be subjected to additional verification procedm_ so as
to ensure a consistent level of quality prior to beginning a certain test activity. This
additional verification may not be as cost-effective for products that are known to be

of very high quality. For example, applying the same procedures designed for
verification of new code to reused software (known to be of high quality) is likely

to be less cost-effective. A score of 4 is assigned.

• Reliability:

Testing an unreliable product is a difficult task, as the unreliability may result in a
number of changes to correct errors late in development. If one knows that a lower

quality product is to be expected (through modeling or comparison with other
similar projects), procedures can be used to lessen their impact. For example, more

rigorous inspection procedures can be used, targeting the types of defects expected
to in the product. Also, additional support for regression testing can be used to help
re-integrate changed modules into a particular build. A score of 3 is assigned.

The table can be used in the following manner. For the experience package (e.g., testing

standard) of interest, one would examine the table to find which characteristics are of

particular importance. Then information about the context of use that characterizes the
reusable package in terms of these important characteristics should be obtained. The current

SEL-94-006
SEW Proceedings 21

project must also be characterized in the same way. These two characterizations can be
compared, and a subjective assessment of the risk of reusing the artifact in the context of
the new project can be made. The higher the score for a given characteristic on the

relevancy evaluation scale, the higher the risk of failure if project sharing or reusing
artifacts do not belong to the same domain, i.e., do not show similar values or do not
belong to identical categories with respect to a given relevant characteristic. In situations

where the risk is high, the reuse/sharing of artifacts will require careful risk management
and monitoring [1388]. Sometimes, in order to alleviate the likelihood of failure, the
shared/reused artifacts will have to be adapted and modified. Also, if projects appear to
belong to the same domain based on an indirect measure (see measurability scale) of the
project characteristics, risk can increase due to the resulting uncertainty.

The following example illustrates the approach. The IBM Cleanroom method was

considered by NASA/GSFC, code 550, for developing satellite flight dynamics software.

In the following paragraph, we give examples of characteristics (and their scores according
to the characteristic evaluation scale) that were actually considered before reusingCleam'oom.

• First, it was determined that not enough failure data (Reliability characteristic in

Table 2) were produced in this environment in order to build the reliability growth
models required by the Cleanroom method. As a consequence, reliability estimates

based on operational prof'des could not be used to build such models. So Reliability
gets a relevancy evaluation metric of 3 and a measurability evaluation metric score
of 3.

• There was, despite intensive training, a lack of confidence in the innovative

technologies involved in the Cleanroom method, in particular, regarding the
elimination of unit test (Personnel Motivation in Table 2: relevancy evaluation score

of 3, measurability evaluation score of 1). Therefore, once again, the process was
modified: unit test would be allowed ff the developer felt it was really necessary and
requested it. Interestingly, after gaining experience with the method, it was found
that unit test was not being requested, so this change was later removed. Also, there

were doubts about the capability of the Cleanroom method to scale up to large
projects. As such, the technique was first used on a small scale project (Product
Size in Table 2: relevancy evaluation score of 3, measurability evaluation score of
3).

• On the other hand, the use of FORTRAN (versus COBOL in IBM) was not
considered as an issue (Programming language in Table 2: relevancy evaluation
score of 1, measurability evaluation score of 3).

Once tables such as those shown in Table 4 have been defined for all reuse goals of interest
in a given organization, they can be used to help assess whether a software artifact can be

reused. For example, suppose that one wants to reuse design standards from other projects
on which they appeared to be particularly successful. The relevancy table for design
standards may tell us that characteristics such as size and programming language are not
very relevant, but that the level of concurrency and real-time in the system are extremely
important characteristics to consider.

Suppose that the set of projects where these design standards were assessed as effective

can be described as follows: stable requirements, heavy real-time and concurrent software,

no specifically tight memory constraints, and very long lifetime requirements (i.e., long
term maintenance). If the project(s) where these standards are to be reused present some

differences with respect to some of these important project characteristics, it is likely that
the design standards will require some level of tailoring in order to be reusable, if reusable

SEW Proceedings 22 S EL-94-006

at all. For example, tight memory constraints would generate the need to include in the
design standards some strategies to minimize the amount of memory used, e.g., standard
procedures to desallocate dynamic memory as soon as possible.

There are a number of weaknesses to this qualitative approach. Perhaps the most important
is that it does not adequately express the influence of a factor in a particular context, or, in
other words, the interactions between factors. For example, suppose a particular factor,
such as tight memory constraints, has an impact on the reusability of a testing methods
only in a particular context (e.g., large-scale projects). The table could tell us that tight
memory constraints is an important characteristic, but it would not convey the information
about the specific context in which it is important. In addition, the table does not quantify
the factor's influence on a ratio scale.

6. Conclusions

A wide variety of software experiences are available for reuse within and across most
organizations. These experiences may be of local validity (e.g., an error model from
NASAJGSFC Code 550), meaningful in a large organization (NASA), or of some value
across several development environments (e.g., the COCOMO cost model). However, it is
not always clear to what extent the experience package may be reused on a given project. In
this paper we described experience domain analysis as an approach to solve this problem.
We described two distinct approaches, one quantitative and one qualitative.

The quantitative approach is feasible; however, there are likely to be practical limitations to
the approach, primarily due to the difficulty in obtaining sufficient and adequate historical

data. The qualitative approach appears more practical; however, it has some drawbacks that
may limit its effectiveness. We axe working towards a solution that will combine the
formality of the quantitative approach with the subjective aspects of qualitative expert
opinion. Ideally, we could express rules, derived from expert opinion, which describe the
reusability of a package in much the same format as the patterns of the quantitative
approach. We are investigating the use of expert systems and fuzzy logic as a means for
capturing and representing expert opinion in such a format. Some of the issues with such
an approach being addressed include:

• How to acquire expertise?

• How to formalize and package the expert opinion so that it is potentially reusable by
other people?

• How to provide a means for dealing with the inherent uncertainty in the expert
knowledge?

• How can we check the consistency and completeness of the acquired knowledge?

• How can we combine several expert opinions?

7. References

[B88] B.W. Boehm, Software Risk Management. Prentice-Hall, 1988.

SEW Proceedings 23 SEL-94-006

[Bas94]

[BB81]

[Boe81]

[BR91]

[Bas85]

[BR88]

[BBH93]

V. Basili et al., "The Experience Factory", Encyclo_t_dia of Software
F.dlgilX_,,_il_, Wiley&Sons, Inc., 1994

J. W. Bailey and V. R. Basili, "A Meta-model for Software Development
Resource Expenditures, Proceedings of the Fifth International Conference on
Software Engineering, San Diego, 1981.

B. W. Boehm, Software Engineering Economics, Prenti_-Hall, 1981.

V. R. Basili and H. D. Rombach, "Support for Comprehensive Reuse,"
Software Engineering Journal, 6 (5), September, 1991.

V. Basili, "Quantitative Evaluation of Software Methodology", Proceedings of
the First Pan-Pacific Computer Conference, Australia, July 1985.

V. Basili and H. Rombach, "The TAME Project: Towards Improvement-
Oriented Software Environments", IEEE Trans. Software Eng., 14 (6), June,
1988.

L. Briand, V. Basili and C. Hetmanski, "Developing Interpretable Models with
Optimized Set Reduction for Identifying High-Risk Software components",
IEEE Trans. Software Eng., 19 (11), November, 1993.

[BBT92]

[992]

[SP88]

L. Briand, V. Basili and W. Thomas, "A Pattern Recognition Approach for
Software Engineering Data Analysis", IEEE Trans. Software Eng., 18 (11),
November, 1992.

M. Dyer, The Cleanroom Approach to Ouality Software Development, Wiley,
1992.

R. Selby and A. Porter, "Learning from Examples: Generation and Evaluation
of Decision Trees for Software Resource Analysis", IEEE Trans. Software
Eng., 14 (12), December, 1988.

SEW Proceedings 24 SEL-94-006

EXPERIENCE DOMAIN ANALYSIS

FOR SOFTWARE REUSE

Victor R. Basili, Lionel Briand, Bill Thomas

Institute for Advanced Computer Studies

Department of Computer Science,

University of Maryland, College Park, Maryland

Presented at the Nineteenth Annual Software Engineering Workshop

November 30 - December 1,1994

J

REUSING EXPERIENCES

The Problem

We need to be able to learn from past experiences so we can
improve our software processes and products

BUT

What past experiences are relevant?

Can they all be used (reused) on our current project?

How do we take advantage of what has been learned in other
parts of the organization?

How do we take advantage of experience in the world-at-large?

Can someone else's best practices be used in our organization
with confidence?

J

SEW Proceedings 25 SEL-94°006

f REUSING EXPERIENCES

The Quality Improvement Paradigm

The Quality Improvement Paradigm (QIP) represents an
improvement process that builds models/packages of our past
experiences and allows us to reuse those models/packages by
recognizing when these models are based upon similar
contexts, e.g., project and environmental characteristics, to our
current project

For example:

• We can use a cost model with confidence when it has been
generated by projects with similar characteristics

• We can use a method with confidence when it has been effective
on similar projects

REUSING EXPERIENCE

QIP Assumptions

The ability to improve is based upon our ability to build
representative models of the software in our own organization

All experiences (processes, products, and other forms of
knowledge) can be modeled, packaged, and reused

An organization's software experience models cannot necessarily
be used by another organization with different characteristics

To build a usable model, we mustfind a representative set of
projects similar to the characteristics of our current project

SEW Proceedings 26 SEL-94-006

REUSING EXPERIENCES

Potentially Reusable Experiences

Data/Models

Descriptive Models Predictive Models

(cost, schedule, reliability, error, change models)

Quality evaluation Models Lessons Learned

Raw Data

Standards/Processes

Requirements Specifications

Design Coding

Testing Inspections

Change Management

Products

Requirements Specifications

Architecture Design

Code Test Plans/Data

REUSING EXPERIENCES
Comprehensive Reuse Development Model

!ii iiiiiiii

(re-) Dackage ,,

i!IIiiiiliiiii

SEW Proceedings 27 SEL-94-006

f REUSING EXPERIENCES

Toward a Solution

We need a mechanism to help us recognize groups of similar
projects with respect to the experience we want to use (reuse)

We need to identify different software experience domains

Projects may be identified as =similar" to other projects ifwe can
learn from them with respect to the reuse of a given
experience with confidence

E.g., I might be able to use data from other experiences bases to
build a cost model if I can select the set of projects in that
experience base with similar characteristics to my own project

We need to develop a set of rules, based upon project
characteristics, that define software domains for particular
experience packages

f EXPERIENCE DOMAIN ANALYSIS

Potential Project Factors Affecting Reuse
• Product

Requirements stability Concurrent Software

Memory constraints Size

User interface complexity Programming languages(s)

Safety/Reliabilily requirements Lifetime requirements

Intermediate product quality Product reliability
• Process

Lifecycle/Process model Process conformance

Project environment Schedule constraints

Budget constraints Productivity
• Personnel

Motivation Education

Experience/training

(Application domain, Platform, Process)

Development team organization

SEW Proceedings 2 8 SEL-94-006

f
EXPERIENCE DOMAIN ANALYSIS

Definition

We use experience domain analysis to refer to identifying areas for
the reuse of experience, i.e., identifying groups of systems for
which:

similar development or maintenance standards may be
applied, e.g., systems for which DoD-Std-2167 is applicable
in NASA

data and models for cost, schedule, and quality are
comparable, e.g., systems for which the productivity can
meaningfully be compared within all the branches of NASA

Once domains have been identified, common processes, standards
and databases may be shared with confidence

by various software organizations, e.g., NASA branches

within broader organizational structures, e.g., NASA centers

J

EXPERIENCE DOMAIN ANALYSIS

Restating the Problem

Problem:

• Determine whether an experience package developed in one
context is likely to be effective when reused in a new, different
context

Potential Solutions:

• A quantitative approach

• A qualitative/heuristic approach

• Formalizing the heuristic approach

J

SEW Proceedings 29 SEL-94-006

f
EXPERIENCE DOMAIN ANALYSIS

A Quantitative Approach

Problem:

• Develop a quantitative approach for determining whether an
experience package, ep, developed in one context is likely to be
effective when reused in a new, different context

A Solution:

• Partition the set of project contexts into domains relative to

the effective use of an experience package, ep. This partition
forms a domain model with respect to the experience package
that is to be reused

• Construct domain models (using multivariate analysis of
historical data describing the contexts in which the ep was
applied). The measured effective use in those c_ntexts is the
dependent variable in the multivariate analysis

J

_L

EXPERIENCE DOMAIN ANALYSIS

A Quantitative Approach

• For an experience package ep, partition the set of projects PR
into domains D={di} relative to the effective use measure for ep

• For new project P and each domain din,calculate the expected
effectiveness of ep for project P as a function of the

• probabilil7 that P belongs to d_

• consistency of the domain d=

• recorded effectiveness distributions in the domains

PR Domain

_ Properties

• Characterization function
• Consistency
• Effectiveness distribution

J

SEW Proceedings
3O SEL-94-006

EXPERIENCE DOMAIN ANALYSIS

An Example

\

Suppose you want to know whether you can use the existing
inspection methodology on project P

Determine potential relevant factors

e.g., project size, personnel training, specification formality,
etc.

Determine the learning criterion

e.g., assume the rate of error detection as the measure of
effective use (the leaming criteria)

Characterize P in terms of the relevant factors, and gather
data from the experience base characterizing past experience
with inspections in terms of the factors and the actual
effectiveness

(Con't)

J

EXPERIENCE DOMAIN ANALYSIS

Example

Run the learning algorithm to determine the expected effective use

of inspections on project P; use an algorithm with interpretable
models that makes no assumptions on the form of the model, e.g.,
OSR

Project Det. rate KSLOC Training Formality ..o

A

B

C

D

,o,

P

.60

.80

.50

.75

?-)
• °

35 Low informal

10 High formal

150 Medium informal

40 High formal

20-30 High formal

Example Pattern:
(KSLOC < 50) & (Training=High) => Det. Rate > .70 J

SEL-94-006
SEW Proceedings 31

EXPERIENCE DOMAIN ANALYSIS

Limitations to Quantitative Analysis

To evaluate the reusability of some experience packages, a
quantitative approach to domain analysis is

• feasible

• mathematically tractable

• automatable

However, it is not likely to be effective when

• There is not sufficient data on past experience

• The effective use of an ep is not easily measured

• There is significant uncertainty in the characterization of the new
project

In these cases we may wish to resort to a more heuristic, expert
opinion based approach

J

EXPERIENCE DOMAIN ANALYSIS

A Qualitative Approach

Problem:

Develop a qualitative approach for determining whether an
experience package, ep, developed in one context is likely to be
effective when reused in a new, different context

Solution:

• Define some subjective metrics that will help experts determine
to what extent a particular characteristic is relevant and usable
when reusing a particular experience package, based upon their
opinion and experience.

• Build a table to associate the effect of these factors with various
experience packages

J

SEW Proceedings 3 2. S EL-94-006

EXPERIENCE DOMAIN ANALYSIS

Relevance Evaluation

Relevance: How relevant is the factor to the use of a particular
experience package, e.g., is requirements instability a factor
that can affect the usability of a cost model?

1. Not relevant, the factor should not affect the use of the ep in any
way, e.g., application domain should not affect use of inspections

2. Relevant only under unusual circumstances, e.g., application
domain doesn't usually affect the use of coding standards, except
when using an application domain specific programming language

3. Relevant factor but the ep can be adjusted, so it can be used
despite value differences, e.g., size has an effect on the use of a
cost model

4. Relevant factor and if a project does not have the right factor
value, the use of the ep is likely to be inefficient, e.g., not cost
effective to use specification standards that require formal
specifications in a simple data processing problem

5. Relevant factor and if a project does not have the right factor
value, the use of the ep is likely to generate a major failure,
e.g., if the project is real-time, requirements and design
approaches from a non-real time environment cannot be used

EXPERIENCE DOMAIN ANALYSIS

A Qualitative Approach

Relevance Metric: How relevant is the factor to the use of a
particular experience package?

Based upon the ordinal scale, the higher the score for a given
factor on the relevancy evaluation scale, the higher the risk of
failure if projects reusing experience packages do not belong to
the same domain

Other Sample Subjective Metrics:

Measurability: To what extent is the factor measurable, e.g., can we
measure requirements instability?

Sensitivity: Does a significant variation in the factor always translate
into a significant variation of the metric

Accuracy: What is the accuracy of the information collected about
the factor

J

SEW Proceedings 3 3 SEL-94-006

EXPERIENCE DOMAIN ANALYSIS

Formalizing the Qualitative Approach

Problems:

• How to acquire expertise?

• How to formalize and package the expert opinion so that it is
potentially reusable by other people?

• How to provide a means for dealing with the inherent uncertainty in
the expert knowledge. There are three types of uncertainty:

.• How can we check the consistency and completeness of the
acquired knowledge?

• How can we combine several expert opinions?

Solution:

We are studying an approach based upon expert systems and fuzzy
logic to try to answer these questions

f
EXPERIENCE DOMAIN ANALYSIS

Conclusion

We believe experience domain analysis is a fundamental problem
in software engineering, especially as related to learning and
improvement, as expressed in the Quali_y Improvement Paradigm

We are working on ways to perform experience domain analysis so
that software domains may be defined

not solely on the bases of local organizational (EF) partitioning

but according to the factors that characterize development
processes, technologies, products, constraints, goals, and
risks associated with the projects

If organizations can effectively share data, lessons learned and
best practice information, they can improve faster and further than
they could in isolation

SEW Proceedings 34 SEL°94-006

N95- 31237

Building an Experience Factory for Maintenance

Jon D. Valett Steven E. Condon

Software Engineering Branch
NASA Goddard Space Flight Center

Greenbelt, Maryland 20771

Lionel Briand, Yong-Mi Kim, Victor IL Basili

Department of Computer Science
University of Maryland

College Park, Maryland 20742

Abstract

This paper reports the preliminary results of a study of the software maintenance
process in the Flight Dynamics Division (FDD) of the National Aeronautics and Space
Administration/Goddard Space Flight Center (NASNGSFC). This study is being
conducted by the Software Engineering Laboratory (SEL), a research organization
sponsored by the Software Engineering Branch of the FDD, which investigates the
effectiveness of software engineering technologies when applied to the development
of applications software.

This software maintenance study began in October 1993 and is being conducted
using the Quality Improvement Paradigm (QIP), a process improvement strategy
based on three iterative steps: understanding, assessing, and packaging. The
preliminary results presented in this paper represent the outcome of the
understanding phase, during which SEL researchers characterized the maintenance
environment, product, and process.

Findings indicate that a combination of quantitative and qualitative analysis is
effective for studying the soltware maintenance process; that additional measures
should be collected for maintenance (as opposed to new development); and that
characteristics such as effort, error rate, and productivity are best considered on a
"release" basis rather than on a project basis. The research thus far has documented
some basic differences between new development and software maintenance. It lays
the foundation for further application of the QIP to investigate means of improving the
maintenance process and product in the FDD.

Computer Sciences Corporation
10110 Aerospace Road

Lanham-Seabrook, Maryland 20706

f

Introduction

Goddard Space Flight Center (GSFC) manages
and controls NASA's Earth-orbiting scientific

satellites and also supports Space Shuttle
flights. For fulfilling both these complex mis-
sions, the Flight Dynamics Division (FDD)
developed and now maintains over 100 differ-
ent sottware systems, ranging in size from 10
thousand source lines of code (KSLOC) to
250 KSLOC, and totaling 4.5 million SLOC.
Of these systems, 85% are written in
FORTRAN, 10% in Ada, and 5% in other

languages. Most of the systems run on IBM
mainframe computers, but 10% run on PCs or
UNIX workstations.

The Software Engineering Laboratory (SEL)
has been researching and experimenting in the
FDD since 1976 with the goal of understand-

ing the software development process in this
environment; measuring the effect of soft-
ware engineering methodologies, tools, and
models on this process; and identifying and
applying successful practices (Reference l).
The SEL has developed an approach to proc-
ess improvement known as the Quality

SEW Proceedings 3 5 SEL-94-006

Improvement Paradigm (QIP) and has
established a supporting organizational struc-

ture, the Experience Factory, for maintaining
the experience base, which is a key element of
this work. These concepts, and their applica-
tion specifically in this study of software
maintenance axe described in detail in Sections

1 and 2 of this paper.

One of the key features of this research is the
combination of qualitative and quantitative
approaches used to characterize the current
practice of software maintenance in the FDD.
These methods affected the design of the

experience base developed for the study, by
influencing which maintenance products and
projects would be examined and which specific
measures would be collected. The structure of

the study is described in Section 3. Sections 4
and 5, respectively, elaborate on the qualita-
tive analysis of the maintenance process and
the quantitative analysis of the product and
process characteristics. Section 6 discusses
lessons learned and early recommendations
for process improvement, and Section 7 poses
questions that will guide future direction for
this research.

1. The Quality Improvement
Paradigm

The QIP is a three-step iterative process that
provides an organization with a framework
for continuously improving its methods of
doing business. These steps-understanding,

assessing, packaging-are shown in Figure 1.

The QIP begins with understanding, because
before an organization can begin planning for
improvement, it must thoroughly understand
its current processes, products, and environ-
mental characteristics. At the current time,
the FDD maintenance study is completing its
first pass through this step.

During the second phase of the maintenance
study, corresponding with the assessing step
of the QIP, improvement goals will be set,
experiments conducted, and their results
assessed. The experiments will test new
methods or tools that show promise of help-
ing this organization achieve its improvement
goals. If these experiments demonstrate
significant improvements in the process or

Figure 1. Quality Improvement Pmdigm

products, these lessons will be incorporated
into the overall FDD organization.

This third and final phase of the QIP, the

packaging step, requires significant invest-
ment to truly capitalize on the time and

money spent in the understanding and assess-
hag steps. It may require developing new
standards as well as implementing and fielding
comprehensive training in these new
standards.

After completing the packaging step,
researchers will baseline the new process by
returning to the understanding step, to verify
the positive effect of process evolution on
the system. Thus begins a new iteration of
the QIP.

1.1 The QIP and Software

Development Projects

The QIP has been used many times within the
SEL to investigate the potential of new tools
or processes on software development proj-
ects. In its more detailed application, the QIP
consists of six steps (Reference 2):

1. Characterize the current project and its
environment with respect to models and
measures. Begin by characterizing the
development project relative to the envi-

ronment. What kind of product is being
developed? How large is the project?
What is the schedule? How is the project
similar to and different from previous
projects? This is used to provide models
of similar experiences from similar
projects.

2. Set quantifiable goals for successful project
performance and improvement. Is the
goal to shorten cycle time, reduce errors,
achieve higher software reuse?

SEW Proceedings 36 SEL-94-006

3. Choose an appropriate process model and
supporting methods and tools for this

project. Choose processes for the project
that show promise of achieving the stated
goals based upon past experience with
projects of this type. Identify projects
with similar characteristics and similar

goals.

4. Execute the processes, construct the
products, collect and validate the pre-
scribed data, and analyze them to provide
real-time feedback for corrective action.

5. Analyze the data to evaluate the current
practices, determine problems, record
findings, and make recommendations for
future project improvements.

6. Package the experience as updated and
refined models and other forms of struc-

tured knowledge gained from this project
and prior projects. Save it in an experi-
ence basetobe reusedon futureprojects.

1.2 The QIP and Software

Maintenance

For maintenance, the implementation of the
QIP is slightly different, because past releases
of the same project provide additional experi-
ence. The underscored phrases below indicate
maintenance-specific foci of the QIP.

1. Characterize the current project release

and proposed set of modifications and its
environment.

2. Set quantifiable goals for successful project
performance and improvement and the

future evolution of this product. Remem-
ber that this release will soon be followed

by another release and yet another
release.

3. Choose an appropriateprocessmodel and

supporting methods and tools for this

projectbased on both domain classand

specificproductknowledge. When study-

ing maintenance, there is an advantage

over applying the QIP to new devel-

opment projectsbecause knowledge and
experienceareavailableaboutthisspecific

product.

4. Execute the processes, construct the
products, collect and validate the pre-
scribed data, and analyze them to provide
real-time feedback for corrective action,

including real-time preventive mainte-

nance on the current project.

5. Analyze the data to evaluate the current

practices and their effects on this product.
Characterize the current product, deter-
mine problems, record findings, and make
recommendations for this product and
future project improvements.

6. Package the experience as updated and
refined models and other forms of struc-

tured knowledge gained from this project
and prior projects. Save it in an experi-
ence base for future projects and the evo-

lution of this product.

2. The Experience Factory

The SEL researchers and database team act as

an experience factory for the software devel-
opers in the FDD (Reference 3). The experi-
ence factory organization is separate from the
project organization. It serves the project
organization by analyzing and synthesizing
knowledge into models that support the
improvement of software development (see
Figure 2). It does so by concentrating on the
analysis and packaging activities of the QIP,
while the project organization focuses on
developing the software. The project organi-
zation supplies process and product data to
the experience factory and carries out
experiments under the guidance of the experi-
ence factory team. The experience factory
collects and analyzes the data from the proj-
ect organization. It stores these data and

analyses in an experience database. It also
packages the best of these experiences into
products, guidelines, and models, which it
feeds back to the project organization to help
improve its process.

The experience factory for maintenance
operatesthe same as the experience factory
for development, with three differences:
First, the experience factory for maintenance

SEW Proceedings 3 7 S EL-94-006

Project
Organization

I products,data....

directproject/
release feedback

products,lessonsI_

project/release

I characteristicsmodels,baselines,
tools,consulting....

ExperienceFactory

' i::/i _ :i_:! _, :

amed, models....

:_port i:;̧
lllll : m.ii,..,.,m.,..,,..

Figure 2. The Experience Factory

must address releases. Second, analysis for

release feedback requires quicker response;
development life cycles are on the order of
18-24 months, whereas maintenance release

cycles are on the order of 6 months. Third,
soft, rare maintenance emphasizes product
evolul_on more than software development
does, so experience includes past experience
on the same project.

3. Building the Experience Base for
Software Maintenance

Because there are many similarities between
software development and software mainte-
nance, the SEL experience of software devel-
opment was used as a starting point for
understanding maintenance. The measure-
ment program for maintenance was modeled
on the measurement program that is used for
understanding software development. This
influenced both the goals that were set and
also the specific data that were identified for
collection. To characterize the process, data
were collected on maintenance effort distribu-

tion by activity, similar to the measures col-
lected for new development, with some
tailoring for maintenance-specific activities.
To characterize the products, data were col-
lected on a number of measures, including the

amount of code modified for a release and the

number of errors introduced by the mainte-
nance work. The specific measures are dis-
cussed m more detail below.

The study team consisted of a team leader
from NASA, three researchers from the Uni-

versity of Maryland, and one researcher from
Computer Sciences Corporation. The team
leader drew up the initial study plan contain-
ing the overall goals, the specific questions to
be answered, and the list of maintenance

measures to be collected for analysis. Data
were collected on eleven maintenance proj-
ects. In addition, researchers closely moni-
tored four of these projects and stayed in
close contact with the maintenance teams on

those projects. The entire study team met
regularly throughout the study to refine the

study plan and assess progress. These meet-
ings also resulted in some revisions to the
collected measures.

Following the lead of Lionel Briand, one of
the University of Maryland researchers, a
general qualitative analysis methodology was
adopted, tailored, and applied to the four
closely monitored maintenance projects
(Reference 4). This methodology provided an
objective but qualitative project characteriza-
tion that complemented the quantitative

SEW Proceedings 38
SEL-94-O06

characterization that was provided by the

measurement data. By supplying the
researchers with a characterization of the

organization structures, processes, issues, and
risks of the maintenance environment, the
qualitative analysis also helped them refine
the data collection measures. In retum, the
quantitative data helped researchers to
understand the qualitative data. This qualita-
tive analysis methodology also provided a
process for determining the causal links
between maintenance problems, on the one
hand, and flaws m the maintenance process or
maintenance organization, on the other hand.
The following two sections describe the com-

bined qualitative and quantitative approach in
detail.

4. Six-Step Process to Qualitative

Understanding

The qualitative analysis methodology con-
sisted of six steps, depicted m Figure 3.
Researchers accomplished each step by
reviewing release documents and process
description documents, and also by inter-
viewing maintenance team members.

Steps 1 through 3 provided an understanding
of the maintenance organization and the
release process followed by the project. With

this information for several projects,
researchers were able to draw comparisons

between projects and to check each project
for adherence to maintenance policies.
Steps 4 through 6 provided the mechanism for
identifying where problems existed for each

project and for demonstrating flaws in the
maintenance organization or the maintenance
process (as followed by the project).

4.1 Understanding Steps (1-3)

Step 1 called for identifying the organiza-
tional entities involved in the maintenance

process. Researchers identified distinct teams,
their roles, and the information flows among
these teams. For example, for each project,
release approval passed from the configura-
tion control board to the maintenance team.

In Step 2, researchers identified the phases of
the release process and the major milestones

that bounded these phases. For example, the
change analysis phase culminated m the

Release Contents Review meeting, and the
solution analysis & design phase culminated

in the Release Design Review meeting.

Step 3 required identifying the activities
involved in each phase. Researchers selected
a list of generic maintenance activities and

Step 1 :

Identify
organizational

entities

Step 2:

identify
phases

Step 3:

Identify
activities

involved in
each phase

Step 4:

Select one or

rnore past
rei_Lse(s)for

Step 5:

Analyze e_e
problems e_at

occurred in
pastrelease(s)

Step S:

Establish

frequency and
consequences

o_flaws in
pmzess and
orOanizalion

i i !

Understanding Steps Analysis Steps

Figure 3. Qualitative Approach to Understanding

SEW Proceedings 39 SEL-94-O06

mapped them into the various phases identi-
fied in Step 2. In Step 3, researchers also iden-
tiffed the inputs and outputs for each phase.
For example, in one project, the solution
analysis & design phase activities included
release scheduling and planning, understanding
the requirements of changes, changing the
designs, some coding, and some quality assur-
ance. Inputs included the Release Contents
Review document; offline discussions among
maintainers, users, analysts, and testers; and
answers to formal questions submitted to
analysts. The outputs included the prelimi-
nary designs, test plans, prototypes, release
schedule, and size estimates.

4.2 Analysis Steps (4-6)

In Step 4, researchers chose a previous soft-
ware maintenance release for analysis.
Researchers took care to select a recent

release, so that the studied release reflected

the current process, and so that complete
release documentation was available. This

choice also made it more likely that the tech-
nical lead from the release would be accessible
for interviews.

In StepS, researchers studied the release
documentation and interviewed the appropri-

ate parties to define and analyze the problems
encountered in developing this release. For
each software change request in the release,
researchers determined the size of the change,
assessed the relative difficulty of the change,
and identified any errors or delays that
resulted from implementing this change
request. If errors or delays resulted from this
work, researchers then attempted to deter-
mine the maintenance process flaws (if any)
that caused these. For example, in one proj-

ect, a change request for a major enhance-
ment resulted in 11 subsequent errors,
substantial rework, and up to 1 month of lost
effort on the release. The errors stemmed

initially from incomplete or ambiguous
change requirements written by the users.
The maintainers designed the enhancement
based on these written requirements. The fact
that the requirements were deficient and that
design r evertheless proceeded on the
enhancement, was judged by researchers to
represent a maintenance process flaw. The

effect of this flaw, however, was then com-
pounded by a subsequent lack of communica-
tion between the users and maintainers. The

users neglected to attend the Release Contents
Review and then voiced no objections to the
design presented by the maintainers at the
Release Design Review. When later, at the
Release Acceptance Test Readiness Review,
the users finally objected to the implementa-
tion of the enhancement, much time had been
lost. This lack of communication revealed

either an unclear definition of release respon-
sibilities or a lack of adherence to the defined

responsibilities.

In Step 6, researchers assessed the frequency
and the consequences of flaws in the mainte-
nance process and organization as provided by
the data gathered in Step 5, and made recom-
mendations for improvements to the process.
For this study, the analysis led to three
recommendations: 1) provide guidelines for
content and format of change requests;
2) explicitly define the content of documents
and review materials; 3)enforce stricter

adherence to the maintenance process, espe-
cially attendance at review meetings and
review/approval of designs.

5. Quantitative Approach to

Understanding

In past studies of development projects,
tracking the developers" estimates of effort,
product size, and schedule has been useful, so
similar data were collected for maintenance
releases. For maintenance, however, the
schedule milestones are somewhat different

from development. Thus data were collected
on effort hours between release start, release
contents review, release design review, release

acceptance test readiness review, and release
operational readiness review. Researchers
monitored and attempted to model the effort

that programmers, testers, and managers
expend on a maintenance release by breaking
the effort down into types of software activ-
ity, such as coding, documenting, regression
testing, and acceptance testing. Additional
activities specific to (or more prominent in)
maintenance were included, such as impact

analysis, cost benefit analysis, and error isola-
tion time.

SEW Proceedings 40 SEL-94-006

The purpose of the quantitative approach was
to define and collect those measurements that

would most meaningfully characterize the
maintenance process and products. Analysis
of these data should establish a baseline model

of the current maintenance process that
answers the following questions:

1. What is the distribution of effort among
soRware activities during maintenance?

2. What are the characteristics of a main-
tenance release?

3. What are the characteristics of mainte-
nance errors?

4. What are the error rates and change
rates?

To achieve the maintenance study goal and to
answer these specific questions, the following
data were collected:

1. Effort by activity (i.e., impact analy-
sis/cost benefit analysis, isolation,

change design, code/unit test, inspec-
tion/certification/consulting, integration
test, acceptance test, regression test,
system documentation, user/other
documentation, other hours)

2. Effort by type of maintenance change
(i.e., adaptation, error correction,
enhancement)

3. Error and change data

- Time spent (i.e., effort to isolate,
effort to fix)

- Source of error (i.e., previous
change, code, design, requirements,
other)

- Class of error (i.e., initialization,
logic, ex'temal interface, internal
interface, computational, or other)

4. Release estimates and actuals (i.e.,
schedule, effort, number of lines of
code, number of modules)

5. Size of software under maintenance

(lines of code)

In January 1994, the SEL began collecting
data on the eleven target maintenance proj-
ects. A new soRware release estimates form
was created and introduced at this time. Two

existing data collection forms (a weekly effort

form and a soitware change request form) had
already been in use for some time within the

organization, and were already being used by
three of the eleven target projects. These
two existing forms continued to be collected,

but now were required for all eleven target
projects. In August 1994, following comple-
tion of some of the qualitative analysis and
after discussions with a wider circle of main-

tainers, the weekly effort form was revised to
capture effort by release and by change
request instead of merely by project. The
soitware activities list also was broadened.

The preliminary results of the quantitative
data analysis are summarized below.

5.1 Maintenance Effort

The average distribution of maintenance

effort by activities is presented in Figure 4.
The activities (listed above) have been

grouped into four categories (design, imple-
mentation, test, other). This figure repre-
sents the overall distribution based on total

effort expended on the eleven maintenance
projects from January through October 1994.
It includes both entire release cycles and some
partial release cycles. This distribution is
dominated by the six busiest projects, which
contributed 93% of the hours used in the cal-

culation of Figure 4. The distributions for the

individual projects vary significantly from
each other and also from this average distribu-
tion. When more data are available for com-

plete release cycles, there may be some
reduction in the variability of this distribution
among projects.

OTHER

24%
DESIGN

28%

TEST

19=/o IMPLEMENT

29%

Figure 4. Maintenance Effort Distribution

SEW Proceedings 41 SEL-94-006

OTHER

26%

DESIGN

23%

TEST

3O%

IMPLEMENT

21%

Figure 5. Development Effort Distribution

The distribution of effort during the original
development was not available for many of

these projects. Figure 5, however, presents
the distribution of effort for the original soft-

ware development of eleven fairly typical
projects from this environment.

As illustrated by these two figures, design and
code (implement) activity constitute a larger
percentage of effort during maintenance than
during software development (57% versus
44%). This contrast reinforces the belief that
design and implementation are more costly in
maintenance than in development. There are

many possible reasons for this, for example,
the difficulty in isolating errors and the rela-
tively large overhead required to make small
code changes. One might expect that this
cost increase would be more pronounced for
error corrections than for enhancements,

because adding major enhancements is more
like doing new development work. The data
in the next section support this hypothesis,
showing greater productivity for enhance-
ments than for error corrections.

5.2 Release Characteristics

When programmers, testers, and managers
reported their time spent on maintenance
effort each week, they recorded their hours by
software activities. Prior to mid-August,

when weekly effort collection forms were
revised, they also classified their hours by the
type of change requests on which they worked

(i.e., adaptation, error correction, or
enhancement) and other hours (e.g., manage-
ment, meetings). This provided researchers
insight into the distribution of types of
changes requested and the amount of effort
each type requires.

Figure 6 presents the average distribution of
effort hours by type of change. These data
represent all the effort data for the eleven

target maintenance projects from January to
mid-August 1994. R includes both entire
release cycles and some partial release cycles.
This distribution is again dominated by the
same six busiest projects, which contributed
93% of the hours used in the calculation in

Figure 6. The distributions for the individual
projects vary significantly from each other
and also from this average distribution. For
example, effort spent on enhancements var-
ied from 51% to 89% among the six domi-

nant projects.

ADAPTATION

5%

OTHER CORRECTION
20%

14%

ENHANCEMENT

61%

Figure 6. Effort Distribution by
Type of Change

Figure 7 presents the distribution of change
requests by type. The data are limited to
completed releases from the last 2 years for
which complete change request data were
available. This amounted to nine releases

containing 83 change requests (4 adaptations,
37 enhancements, 42 error corrections). Only
five of the eleven maintenance projects under

study are represented. As more data from
complete releases become available, this dis-
tribution may change. Again there was much

SEW Proceedings 42
SEL-94-0o6

variability. The percentage of changes that
were enhancements in a release varied from

20% to 83%, excluding one release that con-
sisted entirely of error corrections.

ADAPTATION 5%

ERROR

CORRECTION ENHANCEMENT
45%

Figure 7. Changes By Type

These last two figures demonstrate that in the

FDD enhancements typically are larger than
error corrections and require more effort to
implement. This is shown by the fact that
although the number of enhancements was
slightly smaller than the number of error cor-

rections (45% versus 50%), the ratio of effort
spent on enhancements to effort spent on
error corrections was 4.3: 1.

The difference in size is even more dramatic
than the difference in effort. The
37 enhancements in these nine releases
accounted for 96.6% of the lines of code

added, changed, or deleted, whereas the 42

error corrections accounted for only 3.1%,
for a ratio of 31:1. By comparing the size
ratio (31:1) to the effort ratio (4.3:1), the

productivity (lines of code added, changed, or
deleted per hour) is about seven times greater
for enhancements than it is for error
corrections.

maintenance work. If these errors are caught
by the testers, they in turn generate additional
change requests which usually become part of
the same release delivery. These latter

changes are termed release indigenous
changes. In this study, an attempt was made
to separate these two categories of changes.
(The effort distribution in Figure 5, however,
includes effort on both operationally indige-
nous and release indigenous change requests.
Revised data collection since mid-August will
allow effort to be separated by change
request.)

The next two figures demonstrate the sources
of the errors in these nine releases, both

operationally indigenous and release indige-
nous. The 83 operationally indigenous
changes included 42 error corrections (see
Figure 8). Note that requirement specifica-
tion, code, and design each represent a signifi-
cant portion of the source of errors, 20% to
35% each. These nine releases also included

29 release indigenous change requests, all of
which were error corrections (see Figure 9).

REQUIREMENT

SPECIFICATION

18%

PREVIOUS

CHANGE

13%

OTHER
8%

Figure 8.

CODE 27%

DESIGN 34%

Operational Errors

5.3 Error Characteristics

The 83 change requests described above repre-
sent the original content of these nine

releases. These are all requests to change the
operational version of the software; in this

paper, these changes are referred to as opera-
tionally indigenous changes. During the
implementation of each release, however,

some errors usually are introduced by the

Note that requirement specification and
design represent much smaller portions of the
release indigenous errors than of the opera-
tionally indigenous errors. Previous change is
somewhat higher, and coding is much higher,
for release indigenous errors. The distribution
of errors found in release testing is similar to
the distribution of errors found during accep-
tance testing of new development projects.
This similarity suggests that release testing
and development acceptance testing both

SEW Proceedings 43 SEL-94-O06

uncover similar kinds of errors with similar

degrees of success. On the other hand, soft-
ware operations seem to uncover a different
distribution of errors, suggesting that opera-
tions are more effective than these testing

processes at uncovering certain types of
errors, such as design errors, for example.

More study is needed to explain why testing
and operations should have such different
error detection distributions.

REQUIREMENT

SPECIFICATION

3%
PREVIOUS

CHANGE

17%

OTHER CODE
7% 63%

DESIGN

10%

Figure 9. Release Errors

5.4 Error and Change Rates

When the error rate was analyzed for opera-

tionally indigenous errors, errors were nor-
malized by both the size of the project
(SLOC) and the time period during which they
were detected. This adjustment was made for
the following reasons: R was expected that,
all other things being equal, a larger piece of
software would tend to have more errors than

a smaller piece of software, so errors/SLOC
would be a more meaningful measure of soft-

ware quality than raw errors. It was also sus-
pected that, all other things being equal, the
piece of software that had been exercised
operationally for a longer time probably
would have more errors uncovered. When

comparing error rates for many projects, this
dual normalization resulted in more uniform

error rates across projects, more so than when
either normalization was done separately, or

when no normalization was performed at all.

Error rate data were available for ten of the

eleven projects in this study, reaching back
2 years for most projects. Analysis of the
error rates for these ten projects over the last
2 years (less than 2 years for some of the
newer projects) resulted in a mean value of
11 errors per 100 KSLOC per year (minimum
5, maximum 32). Project size ranged from 42
to 263 KSLOC.

Release indigenous errors are those that are
introduced by the maintenance process. It
was expected that the more code that
modified in a release, the more errors were

likely to be introduced. Therefore release
indigenous errors were normalized by the
modified KSLOC in the original content of
the release. Modified KSLOC is the sum of

KSLOC added, changed, and deleted. For the
nine maintenance releases mentioned above,

the mean error rate for release indigenous
errors was 0.8 errors per modified KSLIX_
(minimum 0, maximum 6.9). Correcting the
release indigenous errors required more lines
of code to be added, changed, or deleted before
delivering the release. The overall ratio of
this additional modified code to the original
modified code for the nine was 2.5% [25 addi-
tional modified SLOC (minimum 0, maximum
172) per original modified KSLOC].

6. Lessons Learned

This study demonstrated the importance of
closely consulting with the software project
personnel (here maintainers) when carrying
out any software development study. Both
the researchers and the maintainers benefited

by the close working relationship on this
study. The researchers gamed a better under-
standing of the difficulties and peculiarities of
the maintenance process; the maintainers

gained some insights into the difficulties of
the data definition, collection, and analysis

process that leads to useful models.

The qualitative analysis that was done for four
of the maintenance projects in this study
helped ensure that the maintainers were inti-
mately involved in the baselining process.
This analysis also helped the researchers to
rethink and to begin to redefine the measure-
ment program. For example, weekly person-
nel effort data is now grouped by release and

SEW Proceedings 44 SEL-94-006

by software change, instead of merely by
project. Researchers have also redefined and
expanded the list of software activities to

which maintainers apportion their effort. In
addition, the qualitative analysis has suggested
the usefulness of reexamining error taxono-
mies, which the study team hopes to address
at a later date.

As the researchers studied the release process,
it became evident that there was a need to dif-
ferentiate between those errors that were
operationally indigenous and those errors

that were release indigenous. One obvious
reason was that reduction of release indige-
nous errors is an important improvement goal
for maintenance. A second reason is that

each of these error sets has something impor-
tant to say about the maintenance process. In
trying to resolve operationally indigenous
errors (and adaptations and enhancements),
maintainers sometimes introduce release
indigenous errors. When such errors are

introduced, both the original change request
and the change request for the resulting
release indigenous error must be examined to

learn how effective the maintenance process
is and how it might be improved.

Although the definitions given above for
these terms imply that the two error sets are

distinct, in practice, the actual error popula-
tions do not fit the definitions one hundred

percent. For example, the set that this study
termed the operationally indigenous error set
should include only those errors that were

introduced during the original development of
the software. In reality, this set may also
include a few errors that were introduced dur-

ing maintenance, but which were not
identified until the maintenance release

became operational. The release indigenous
error set should include only errors that were
introduced by the maintenance process. In
reality, this set may contain some errors that,
although caught by release testers, were in fact
residmg in the operational software and were
not new to the maintenance release. Despite
these imperfections, there was enough consis-
tency in each set to treat them separately.

In characterizing the size of a release, some
measure other than the total number of

changes is necessary, because some changes

(especially enhancements) tended to be more
complex and time consuming than others.
For this study, the total modified lines of code

(new SLOC + changed SLOC + deleted SLOC)
for all changes was used as the measure of
release size.

The release characterization demonstrated

that, on average, FDD releases are composed
of about an equal number of error corrections
and enhancements, but that the enhancements

require significantly more effort and far more
code. Comparing this effort and size data
between enhancements and error corrections

revealed that the productivity for enhance-
ments was approximately seven times greater
than for error corrections. Why this is so,
and whether it is good or bad, remains to be
seen. The characterization of maintenance

errors revealed surprisingly few errors attrib-
uted to requirement specifications or to
design. This deserves further investigation,
especially since the qualitative analysis sug-
gested that requirements deficiencies on soft-

ware change requests were a problem. The
preliminary characterization of error rates

resulted in two different ways to normalize
errors, one appropriate for operatioaally
indigenous errors and another appropriate for
release indigenous errors.

Qualitative analysis suggested that the FDD
needs to provide better guidelines for content
and format of change requests and release
documents. The FDD also needs to enforce

stricter adherence to the maintenance proc-

ess, especially attendance at review meetings.
The preliminary quantitative analysis pro-
vided many msights into FDD maintenance
but also spawned as many new questions. The
preliminary effort distributions indicated that
design and implementation require more
effort in maintenance than they do in new
development. Exactly why this is so is not
clear at this time.

7. Future Study of Software
Maintenance in the SEL

The combination of qualitative and quantita-

tive analysis methods has provided a compre-
hensive look at the software maintenance

process in the FDD. From this researchers
have made a good start at baselimng this

SEW Proceedings 45 SEL-94-006

process. Preliminary quantitative data analy-
sis is based on only nine complete mainte-
nance releases. More releases need to be
studied. Also baseline models need to be

extended to include an understanding of main-
tenance cost and cost estimation, plus a better

understanding of error rates. Beyond this,
future maintenance study activities need to

provide a more complete understanding of the
testing process and the inspection and certifi-
cation process. The impact of software
development practices on later soflxvare
maintenance also must be measured.

The FDD has recently embarked on a major
effort to port most of its soRware from IBM
mainframes to UNIX workstations. This

effort will result in a great many maintenance
change requests of the adaptation type. The
current study needs to analyze whether and
how it should adapt itself to make the most
use of the data that this transition will

generate.

Once the understanding phase of the current

study is completed, the assessing phase will
begin. Researchers will design and carry out
experiments through which they will be seek-
ing answers to these questions and others:

1. How might we know when a product has
outlived its usefulness?

2. What is the "right size" for a mainte-
nance release?

3. Can we predict the most error-prone
modifications, and if so how?

4. How can we more accurately estimate
the cost of software changes?

This application of the QIP has expanded the
SEL's understanding of the maintenance

process and product in this environment. Fur-
ther baselining, experimentation, and research
should lead to recommendations for

improvements to the maintenance process
that can be packaged and instituted in the
FDD.

References

1. McGany, F., G. Page, V. R. Basili, et al., An
Overview of the Software Engineering Labora-
tory, SEL-94-005, December 1994.

2. Basili, V. R., "Quantitative Evaluation of Soft-
ware Engineering Methodology," Proc. of the
First Pan Pacific Computer Conference,
Melbourne, Australia, September 1985 [also
available as Technical Report, TR-1519,
Deparanent of Computer Science, University of
Maryland, College Park, July 1985].

3. Basili, V. R., G. Caldiera, F. McGarty, et al.,
"The Sofiwa_ Engineering Laboratory - An
Operational Software Experience Factory,"
International Conference on Software Engin-
eering, May 1992, pp. 370-381.

4. Briand, L., V. R. Basili, Y. M. Kim, D.
Squier, "A Change Analysis Process to Charac-
terize Software Maintenance Projects," Interna-
tional Conference on Software Maintenance
1994, Victoria, British Columbia, Canada,
September 1994.

SEW Proceedings 46 S EL-94-006

Building an Experience Factory for
Maintenance

Jon D. Valett

NASA/GSFC

Steve Condon

CSC

Lionel Briand, Yong-Mi Kim, Victor Basili

University of Maryland

An Experience Factory: for. Maintenance

The QIP

(high level)

The QIP

(detailed

level)

• Characterize the project

• Set goals for the project performance

and improvement

• Choose processes for the project

• Evaluate the processes

• Analyze for future projects

• Package experience for experience

base

Development Maintenance

iteral_///_,oals Packaging [[itera_als Packaging_'g_ls Assessing Assessing

[Understanding. I [l_/'g°als Understanding

• Characterize the release & the project

• Set goals for the project performance

and improvement and for future
evolution

• Choose processes for the project based

on product knowledge

• Evaluate the processes

• Analyze for this product & future

projects

• Package experience for experience

base and for the evolution of this

producl

Software Engineering LaboratoD

SEW Proceedings 47 SEL-94-006

An Experi en£e Fa.qtqr, for-M-a/m .n n_ c.e.

l_-ojcct
Organizatimt Experience Factory

I p_od_c_s,d=a....

direct pro)ecU' [Analysls [.

_rcleas¢ feedback L.,p-__-_.........

! _ pmducts, lessons wned, modcIs...

prolect/relcas¢chataclcnstics

_ m_els, baselines, _

I_ls, consuhing...

Exlx_rience

Base Package

I Experience Faclory Organization is Ihe same for maintenance, except I

• Focus includes releases [

• Analysis for release feedback requires quicker response (release life cycle -6 months) |

_a, Software Engineering Laborator,

B u.i]:ding:-the=Experi'en e,: B a e=

Key First Step is Still Understanding

Use SEL Development Experience as a Basis for Studying Maintenance

Set Goals

- Characterize the maintenance process

- Characterize the maintenance products

Use Qualitative and Quantitative Analysis

- Qualitatively - Follow an organized approach to understanding

Work with maintainers and project leads

_, Process can vary across projects (process documents aren't always followed)

- Quantitalively - Establish a measurement program to build baselines

- Use quantitative data to understand the qualitative and use qualitative data to help define the

data to collect

Qualitative and Quantitative Components [are Critical to Maintenance Understanding

--_ Soltwam Englneedng Laborato G

SEW Proceedings 48 S EL-94-006

Qua Jlt_t_e: Approac:h to Understand ing_

I Stepsused independently I

on 4 different projects in |

. °ne_envir°nment [

Step 1:

Identify

Organizational

Entities
Step 2:

Identify

Phases

I step 3:

Identify
Activities

involved in

each phase

_ Software Engineering Laborator_

Step 4:

Select one or

more past
releases for

analysis

Step 5:

Analyze the

problems

that

occurred in

the releases

I

Step 6:

Establish

frequency
and

consequences
of flaws in

process and

organization

• Briand. et.
a[. ICSM "94

St ep_ I - 3:: Und:e rsmndOr.gapizatj:Qn_ a.ndl th¢:
Releas_ _: oc_ss:

• Step I - Identify organizational entities

- Identify distinct teams and their roles

- Characterize information flow between teams

eg. release approval passes from the configuration control board to the maintenance team

• Step 2 - Identify the phases of the release process

eg. preliminary release defmition...release design review...intcgration test

• Step 3 - Identify activities involved in each phase

- Define each phase in terms of inputs, outputs, and activities

eg. Design phase:

Input is Release Review Document,

Output is design, test plans and prototypes,

Activities are changing design, changing code, unil testing and integration testing

I Steps 1-3 Provide: ii

• Understanding of the process

• Point of comparison amongst projects

• Check of adherence to policies

_ Software Engineering IJboralor.

SEW Proceedings 49 S EL-94-006

St ps: 4 : 6:: I;den.tjry.P:r l.em: Areas

• Step 4 - Choose a recent release for analysis

- Choose recent releases

- Choose releases with complete documentation

- Choose releases where the technical lead is still available for interview

• Step 5 - Analyze causes of problems

- For each change in a release use interviews and document review to:

, Determine the difficulty of the change

,, Determine the maintenance process flaws

,_ Determine what delays and errors were caused by the process flaws

eg. One change resulted in 11 errors.

Due to Incomplete requirements and Unclear definition of responsibilities.

Up to one month of effort lost.

• Step 6 - Establish frequency and consequences of flaws in the process and organization

- Provide suggestions for improvement based on Step 5 from multiple projects, e.g.

,_ Standard for content and format of change requirements needed

_>Stricter adherence to process needed

_>Document and review content needs explicit definition

' Software Engineering Laborato_

Qu_a_ntj.t.ati e: Approac:h: t.o,U;nde sta._nd!ng;

Measurement program to establish baseline understanding of maintenance process and
product

Based on goal for the maintenance study generate questions such as

- What is effort distribution during maintenance?

- What are characteristics of maintenance releases?

- What are characteristics of maintenance errors?

- What are error and change rates?

- etc.

Measurement data includes

- Effort by activity

- Effort by type of maintenance change

- Error and change data

>> Time spent

, Source of errors

_, Class of errors

- Release estimates and actuals

- Size of software under maintenance

_ Software Englmmdng Laboratot5

SEW Proceedings 50 SEL-94-006

Understanding: Maintenance Effort-

Maintenance Effort Distribution * Development Effort Distribulion **

OTHER DESIGN OTHER DESIGN

24% 28% 26% 23%

TEST TEST

19% 30%

CODE

29%

CODE

21%

I Design and Code are a Larger Percentage of IActivity During Maintenance I
*Based on 11 projects I

** Based on l I diffcrenl projects I

Software Engineering Laboralor_

Effort Distribution by Type of Change* Changes by Typ[*

ADAPTATION ADAPTATION

5% 5%

OTHER

14% ENHANCEMENT

45%

/ CO_REC-nON

ENHANCEMENT

61% I "97% of c°de added and m°dified due t° [enhancement

IReleasesaremade°po'manysma"l_I '"_" Ichanges and large enhancements I:i *. s3 ch_g_0.9.:,_=

_ Soltware Engineering Laboratory

SEL-94-O06
SEW Proceedings 51

Error: C.b_a_r _a.e:t_ilstj¢:s:

Source of Errors

Operational Errors* Release Errors*

(Found during operational use) (Due to maintenance process)

REQUIREMEhrT REQUIREMENT

SPECIFICATION SPECIFICATION

18 CODE PREVIOUS 3%

27%

PREVIOUSCHANGE

CODE

OTHER DESIGN _ __ / 63%

)F.S1GN 10%34%

Software Engineering Laborator-,

Error- and (_hange Rates;

• Operational Error Rate

- 10 Errors / 100 KSLOC / year (5 rain., 32 max.)

• Release Error Rate (through acceptance testing)

- 0.8 Errors / Modified KSLOC (0 min., 6.9 max.)

• Change Rate

- 3.7% of code modified/release (0.1% rain., 11.7% max.)

I - Based on 9 releases I

- Modified KSLOC = 1000"s of New + Modified + Deleted LOC

- Project size ranges from 48 Io 227 KSLOC

_ Sofl_mre Engineering Laboralor_

SEW Proceedings
52 SEL-94-006

• Include the Maintainers in the Study

- Valuable to both groups

• Use the Qualitative Analysis to Help Define the Measurement Program

- We now collect effort by change

- We redefined our effort activities

- We need to reexamine our error taxonomies

• Distinguish Between Operational Errors and Errors During Releases

• Define a Measure for Release Size

- We use New LOC + Deleted LOC + Changed LOC

_ Software Engineering Laborator_

Studying Software Maintenance in the SEL

• Using Qualitative and Quantitative Understanding in Combination has been
Very Successful

• Future Maintenance Study Activities

- Baselining Activities Need to Continue to

>_Understand cost and cost estimation

_ Understand error rate

- UndcrstandingTesting and Inspections

- Understanding how Development Impacts Maintenance

- Understanding the Adaptation Process

- Experiment with Process Changes

• We would like to be able to

- know when a product has outlived its usefulness

- know the "right size" for a release

- predict the most error prone modifications

- estimate the cost for changes

- leverage our experience base to solve these quicker

Englneewtng Labo_tonSoftware

SEW Proceedings 53 SEL-94-O06

SEW Proceedings 54 SEL-94-006

N95. 31238

Closing the Loop on Improvement:
Packaging Experience in the

Software Engineering Laboratory

Sharon I_ Waligora, Linda C. Landis, Jerry T. Doland

Computer Sciences Corporation
10110 Aerospace Road

Lanlaam-Seabrook, Maryland 20706

Abstract

As part of its award-winning software process improvement program, the
Software Engineering Laboratory (SEL) has developed an effective method for
packaging organizational best practices based on real project experience into
useful handbooks and training courses. This paper shares the SEL's
experience over the past 12 years creating and updating software process
handbooks and training courses. It provides cost models and guidelines for
successful experience packaging derived from SEL experience.

i

1. Introduction

The Software Engineering Laboratory (SEL) is a
partnership among NASA Goddard Space Flight
Center (GSFC), Computer Sciences Corporation
(CSC), and the University of Maryland; it has
received international recognition for its
achievement in continuous, measurable im-

provement in software products and processes.
The SEL supports the Flight Dynamics Division
(FDD) at GSFC, which builds software systems
for satellite ground support and spacecraft
attitude control.

The SEL has forged a process improvement
approach that identifies the goals of the organi-
zation, initiates process improvement initiatives
based on those goals, and measures the impact
of those initiatives on the products produced.
This approach is based on the concept of organ-
izational learning from project experience,
similar to the way that successful people learn
from their experience and apply new techniques
to the way they do their jobs. For example, once
an improved process or new technology has
been used successfully by a pilot project, it must
be shared with other projects to broaden its
impact. This expansion of process improve-
ments throughout the organization is

accomplished in the SEL through packaging.
Packaging is a structured mechanism for cap-
turing the best practices, the most effective tech-
nologies, and the lessons of past experience and
communicating that information throughout the
organization. By making improvements part of
the standard way of doing business, packaging

closes the process improvement loop.

Recent SEL experience shows the benefits of

packaging. In the late 1980s, the SEL began
experimenting with several software engineering
technologies, including object-oriented design,
the Ada language, and the Cleanroom methodol-
ogy. Around 1990, the SEL updated and
improved its methodology guidebooks and
developed new training courses. As a part of
this update, beneficial parts of each of the
experimental technologies were integrated into
the methodology along with process improve-
ments derived from best practices that had
evolved since the guidebooks were last revised.
Key product measurements from the 1990-1993
time period show dramatic across-the-board
improvements over baseline measurements
taken in the mid- to late 1980s: a three-fold
increase in software reuse that resulted in

significant cost and schedule savings, and a
75 percent decrease in software development

PRECEDING PAGE BLANK NOT FILMED

SEW Proceedings 5 5 SEL-94-006

errors. These improvements can be traced to
new tedaxiques--such as the high-reuse process
that grew out of the Ada/OOD experimentation
and the consistent use of soRware inspections
and code reviews that was introduced by the
Cleanroom methodology--which were high-
lighted and stressed m the new guidebooks and
training.

These standards are not just "shelfware;" a sur-

vey of the local software engineering staff indi-
cated that users find the guidebooks relevant and
easy to use. The survey results revealed that
95% of the software developers use the guide-
books, with software project leaders and manag-
ers using them most frequently. In addition,
SEL guidebooks have been cited by indusUy
publications, such as The Software Pract#ioner,
as excellent examples of practical software
engineering standards. The SEL's Manager's
Handbook has been used as a textbook for soft-

ware management courses at the University of
Maryland, the Johns Hopkins University, and
McGill University in Canada. The training
courses also have been well received. Course

evaluations consistently rate the SEL courses as
highly relevant and informative, with 90% of the
participants stating that the courses were well
worth the time they had invested.

This paper describes the SEL packaging proc-
ess--our approach to capturing and reusing
experience. We discuss the methods used to
synthesize experience into a standard software

engineering process and to effectively commu-
nicate that process to the software engineers.
We consider the needs of the audience; sources
of information; issues of package scope, content,
and format; and offer cost and schedule models
for packaging. Finally, we summarize some of
the key lessons learned and roles of thumb for
packaging experience.

2. Background

2. I SEL Process Improvement

Paradigm

The SEL's process improvement paradigm is
shown in Figure 1. The first and most important
step is understanding how an organization cur-
rently does business and what it values. This is
done by characterizing the products generated
and the process that is used to produce them. In
the second step, assessing, the organization sets
goals for improvement, and experiments with
process changes, such as a new technology, that
might help achieve its goals. This is done by
introducing a process change on pilot projects,
assessing its impact on the product, and refining
it if necessary before selecting it for use
throughout the organization. The final step is
packaging, where the successful new technolo-
gies and procedures are integrated into the
organization's standards and training program so
that all projects may benefit from the changes.

ITERATE

UNDERSTANDING

_.SSESSING

PACKAGING

Make improvements part o/your business

Determine effective improvements

Know your so/fware bus_ess

TIME -'_

Figure 1. SEL Process Improvement Paradigm

SEW Proceedings 56
SEL-94-006

Within the SEL, a group of researchers, analysts,
and support personnel (separate from software
developers) perform process improvement
activities. They collect and analyze software
project measurements to produce models and
standards for use by the projects. They design
and monitor experiments with new technologies
and modified procedures to determine their
applicability to the local environment and
refine/tailor them for optimum use in the FDD.
They package research results and local experi-
ence in process guidebooks, training courses,
and tools.

2.2 Experience Packaging

The SEL relies on its measurement program to
provide a view into actual product and process
characteristics. Similarly, it uses experiments to
gain additional insight into the effect of new or
modified techniques, tools, and processes on the
products. Based on this information, the SEL
identifies and captures the most appropriate
practices/technologies in "experience packages."
These packages are in the form of standards,
tools, and training that give practical guidance
on how to apply the new techniques in the con-
text of the local process. This guidance effec-
tively captures the results of the understanding

and assessment phases, packages them for
"reuse" by subsequent projects, and integrates
them into the routine software business. SEL

packages are always designed with the local
organization's needs in mind, but many have
found broader applicability outside the SEL
domain.

Packaging is performed by a team that is
independent from the development organization,
but whose members work closely with develop-
ment personnel. Packagers talk with developers
to learn about improvements made within the
projects while using the standard process in a
changing environment. They study project
documentation and data to verify their findings.
Using the current documented software devel-
opment process as a reference point, packagers
determine the evolved state of the practice based
on current project experiences and create new
baseline models. The packagers also integrate
beneficial new methods derived from SEL

experiments into the standard software devel-
opment process. Working in consult with the

project personnel who will use the materials, the
packagers synthesize all of this information into
an updated process. From there, they design the
optimal presentation of the information, develop
the package, and introduce it to the users
through organized deployment and delivery.

2.3 SEL Experience Packages

The SEL has developed a primary set of gnide-
books, training, and tools that document and

support the evolving local process. In addition
to these major packages, the SEL produces tech-
nology reports and interim packages. These
products support the assessing step of the proc-
ess improvement paradigm and have shorter life
spans and are less extensively distributed.
Technology reports record the results of SEL
studies with specific technologies and tech-
niques. They contain the recommendations and
rationale for including all or parts of the subject
technology in the standard local process or for
abandoning the technology or process change as
inappropriate for this environment. Interim
packages fill the gap when a new technology is
being assessed, while its applicability in the
environment has not been determined or suffi-

ciently refined for widespread local use. Some
interim packages have been incorporated into
later updates of the standard methodology, and
others have been entirely superseded.

2.3.1 Guidebooks

The SEL has produced a set of guidebooks that
defines the baseline development standard. The
guidebooks communicate the rationale for the
methods and offer guidance for applying them,
rather than specifying detailed procedures. We
have found that this level of detail allows each

project the flexibility to define project-specific
procedures as needed (based on those used by
previous similar projects) to meet the needs of
its current environment. Given that detailed

procedures change as improvements are intro-
duced and the organization evolves, segregating
procedures from the formal documentation miti-
gates the need for project waivers and continual
updates to the standards.

In addition to the baseline standards, several
specialized documents have been developed to
support tailored applications of the local process,

SEW Proceedings 57 SEL-94-006

such as implementing in a particular pro-
gramming language or using a tailored
methodology. We have learned that it is best to
document language-specific processes separately
from the baseline methodology; this allows them
to be modified as frequently as needed to keep
pace with rapidly changing technology.

Baseline Standards

• Manager's Handbook for Software Develop-
ment--Contams the models, guidelines, and
acceptable processes for managing the devel-

opment of flight dynamics systems. It pro-
vides specific guidance for using planning and
performance models to successfully manage
soRware engineering projects.

• Recommended Approach to Software Devel-
opment-Presents guidelines and standards for
developing soRware in the flight dynamics
environment Intended for developers and

technical managers of soflvcare development
projects, it describes the recommended prac-
tices for each phase of a software development
life cycle, including key activities, products,
measures, methods, and tools.

• Cost and Schedule Estimation Study Report--

Presents planning models for cost and sched-
ule estimation based on local project data.
The planning parameters are built into spread-
sheet tools for use by project managers and are
updated yearly based on ongoing analysis.

Tailored Standards

• Ada Developers' Supplement to the Recom-
mended Approach--Presents guidelines for

programmers and managers who are develop-
ing flight dynamics soRware in Ada. Intended
to be used in conjunction with the Recom-
mended Approach to Software Development, it
provides additional detail on reuse and object-
oriented analysis and design.

• C Style Guide--Presents the recommended
practices and coding style for programmers
using the C language in the flight dynamics
environment. The guidelines are based on
generally recommended software engineering
techniques, industry resources, and local con-
vention. It offers preferred solutions to C pro-
gramming issues and illustrates through
examples of C code.

• Cleanroom Process Handbook--Presents

guidelines for using the Cleanroom method-
ology in the flight dynamics environment. It
describes the Cleanroom life-cycle model and
the specific activities performed in each life-
cycle phase. It also addresses pertinent mana-
gerial issues and highlights the key differences
and similarities of the SEL Cleanroom process
and the standard development approach. This
handbook started out as an interim package
and later became a tailored standard after the

methodology matured in the local
environment.

Figure 2 shows the development history for sev-
eral SEL guidebooks. The Manager's Hand-
book and Recommended Approach were initially
developed in the early to mid-1980s and then
updated around 1990. The SEL developed a few
interim guidebooks, a Generalized Object-
Oriented Development (GOOD) Guide and an

Package Updates 1982 1984 1986 1988 1990 1992 1994

Manager'sHandbook

Recommended
ApproachSW Devel

GeneralizedOOD

AdaStyle Guide

CleanroomProcess
Handbook

Ada Supplement

C Style Guide

.=
,_w • Intedm

,wA Updated

A
V

A
V

Figure 2. SEL Guidebook Development History

SEW Proceedings 58 SEL-94-006

Ada Style Guide to support experiments in the
late 1980s. The GOOD Guide eventually was
absorbed into the next update of the Recom-
mended Approach while the Ada Style Guide
was replaced by an evolved industry standard.

2.3.2 Training Courses

SEL training packages include several core
courses and a traming plan that documents the
goals of the training program, describes course

content, and recommends the training sequence
for project personnel. The core courses cover
the SEL organization, methodology, and process
improvement approach, and provide in-depth
training in the application area and software
development process. These courses are
updated as needed to reflect changing process
elements within the SEL All staff (managers,
developers, maintainers, testers) are expected to
participate in the core set of training classes.
Courses include:

• Orientation to the FDD--Onents the new-

comer to the local environment, applica-
tion/mission, organization, process
improvement approach, and methodology;
6 hours-lecture.

• Principles of Fhght Dynamics--Bridges the
gap between academic mathematics and
physics, and their application in flight
dynamics software systems; 30 hours-lectures
and homework exercises.

• Recommended Approach to Software Devel-
opment-Illustrates the use of and rationale
for applying the local software development
methodology (based on the guidebook dis-
cussed above); 24 hours-lectures and work-
shops.

• Task Leader/ATR Training--Demonstrates
how client and contractor project leaders work
together within the context of the contract to

successfully manage software projects;
12 hours-lectures, workshops, and interactive
exercises.

2.3.3 Tools

An important aspect of packaging is the infusion
of technology in the form of support tools for
use by project personnel. The SEL developed a

project management tool called the Software

Management Environment (SME) that puts local
experience at the fingertips of project managers.
The SME provides access to the SEL's database
of previous project information and baseline

process models. Usmg the SME, a manager can,
for example, compare the grog_da rate of source
programs or the error rate of the current project
against the models, or, using data from similar
projects in the database, the manager can predict
future trends on the current project. This tool
has helped institutionalize the SEL process,
because project managers can use it to gain
insight into their software projects.

3. Packaging Guidebooks and
Training

The SEL's current packaging process is based

on the fundamental understanding that the local
software engineers are the pnmary users of our
products. When developing guidebooks and
training courses, the SEL emphasizes user
involvement to ensure that the documented

process matches what is actually done, that

recommendations are based on agreed-upon t_ro-
cedures, and that the end product will be useful
to the software engineers.

This approach has evolved over the years, with
the SEL learning from some missteps along the
way. For example, the first issue of the SEL's

baseline standard, the Recommended Approach
to Software Development, was a classic case of
the "typical" approach (described below).
Originally conceived and published without

much input from local, practicing software engi-
neers, the standard was ill-received and almost

immediately recalled for revision. At that point,
early SEL "packagers" decided to take a new
approach, and just write down exactly how the
developers actually produce, test, and maintain
software in this environment. Their new docu-

ment, albeit rough, formed the basis of the cur-
rent Recommended Approach. This guidebook
has since been refmed based on the experience
packaging concepts discussed in this paper. At
its core is the concept that the users know best

how they do their jobs and what guidance they
need to support them in their work.

SEW Proceedings 59 SEL-94-006

3.1 Typical Industry Approach

The typical industry approach to defining proc-
ess often results in the creation of "shelfware,"

i.e., standards and procedures that aren't used
and wind up gathering dust on bookshelves

throughout an organization. This commonly
used process (shown in Figure 3) begins with
managers or quality assurance personnel creat-
ing a list of topics to be addressed based on an
external (industry) standard. The topics are then
divided up and distributed to people who have
expertise in the subject areas. These people do
their best to draft the standards and procedures

for their particular topic in their spare time--
because rarely are there resources or time
allocated to the effort--while also meeting their

regular project responsibilities. The draR stan-
dards are subsequently distributed to a small

group of reviewers and turned into "legalese" by
incorporating everyone's review comments.
They are then assembled by a coordinator, pub-
lished, and distributed to the developers. When
the standards are delivered, it may well be the
first time that most of the developers will have
seen them. They peruse them, often don't
understand them or recognize their relevance,
and so, they place them on the shelf, and con-
tinue following their current process.

3.2 SEL Approach

The SEL packaging process, illustrated in Figure
4, involves the users directly. Two separate

groups each play an important role in this proc-
ess: the packagers who document the process
and the software developers who are the users of
the process and the supporting packages. The

packagers, who are usually dedicated full time to
the effort, are responsible for gathering and dis-
tiring process information and then presenting it
in a useful form. The experienced developers
are one of their key sources for this information.
SEL packagers also consider information from
the SEL's metrics database and results from SEL

experiments when defining the updated process.
This information flow is depicted by the outer

loop in Figure 4.

The inside loop in Figure 4 represents the item-
rive method used to refine the software devel-

opment process and develop the package. Often,
as the preliminary step in a packaging effort,
project personnel are interviewed or invited to a
brainstorming session to gather information and

requests for package content. They explain to
the packagers how the process is being applied
in the current environment, they raise issues and
problem areas, and they offer suggested
improvements. Based on the identified strengths

TOPICS FOR
ST,*,I_

\
TOPIC I

f_ e-

Ill
SOFTWARE DEVELOPERS

®
PUBLISHED STANDARDS

Figure 3. Typical "Shelfware" Development Process

SEW Proceedings 6O
SEL-94-O06

• PROJECT EXPERIENCES
• CURRENT PROCESS
• PROPOSED IMPROVEMENTS

Quantitative
Data

• NEW TECHNOLOGY
• EXPERIMENT RESULTS

REVISED PROCESS &

SOFTWARE DEVELOPERS

11 GUIDEBOOKS• TRAINING

EXPERIENCE
PACKAGERS

Figure 4. SEL Package Development PrOCess

and weaknesses of current books and courses (if
available), packagers design and prototype new
packages using key developers as reviewers for
both content and usability.

We find that this approach results in accurate,
usable guidebooks and effective training
courses. The developers feel connected to the
products because they were involved in creating

them, and they appreciate the fact that they were
not burdened with producing them. The quality
of the package is top-notch because the team
that produced it was dedicated to the effort and
skilled in communication, information analysis,
and desktop publishing.

3.3 Packaging Activities

The basic activities in the experience packaging
process include:

• Information gathering and synthesis

• Package development

• Package deployment

These activities are looked at in detail in the

paragraphs that follow.

Information Gathering and Synthesis

Packagers first review any existing version of
the standard or guidebook that is to be updated
or, in the case of training, the information on
which the course will be based. In essence, they
apply step 1 of the process improvement para-
digm, understanding; they baseline the docu-
mentation that currently exists in the

environment. Packagers then apply step 2 of the
paradigm when they interview experienced

developers, maintainers, testers, and managers to
assess how closely the actual software engi-
neering practice maps to the documented proc-
ess. They determine where the process has
changed and how it has been tailored for differ-
ent situations, and they validate this information
by analyzing empirical data. Packagers also
review SEL study reports and experiment results
to identify new techniques that have been rec-
ommended for inclusion in the standard process.
Finally, all of the input is synthesized to define
the new process. Facilitated workshops are then
organized to clarify issues and to develop con-
sensus on the process content.

SEW Proceedings 61 SEL-94-006

Package Development

Once the content is decided, the focus shiRs to

designing the right package to communicate the
information. Users are interviewed to under-

stand their work habits and approaches to learn-
ing. They are asked to cite the strengths and
weaknesses of existing coursesand guidebooks.

This helpspackagerschoose the most effective

communication stylebased on theusers'prefer-
ences and to choose the most appropriate course
format for their audience and subject matter.

Although guidebooks and training courses have
the same goal of describing a process and the
rationale for applying it, they are fundamentally
differentcommunication media. Whereas

guidebooks providestandalonctextreferences,

successfultrainingcoursesleveragethecombi-
nationof written (visual) material and a human
instructor in an interactive setting. These two

types of packages require different production

processes.

Guidebooks

For guidebooks, the packagers begin by devel-
oping prototypes of key sections to get early
feedback from the users on the "look and feel"
of the document This is an extremely effective

way to validate and further refine the packagers'
understanding of the right level of detail and to
get feedback on different communication styles.
The text and layout of the guidebook are then
developed iteratively, allowing the users to
review both content and format. As the docu-

ment evolves, key developers serve as expert
reviewers. The packagers also solicit comments
from a broader group of reviewers in the final
stages of development, before deploying the
final product. The SEL has found that a typical
guidebook may go through 3-4 iterations before
it is ready for final review. Throughout the
review and feedback process, SEL packagers
carefully scrutinize and synthesize all review
comments to avoid inserting into the guidebooks

"special interest" language (e.g., individual pref-
erences or compliance "loopholes") and to guard
against writing in the obtuse style that oRen
results from mass review.

The SEL has discovered that this iterative proc-
ess results in user-friendly guidebooks that are

actually used. SEL guidebooks use graphics to
illustrate concepts and lead users to the informa-

tion they need. For example, the Manager's
Handbook uses an innovative graphic layout to
communicate measurement models, and the

Recommended Approach includes keywords,
notecards, icons, "chapter highlights," and a
detailed subject index. Both are designed as
references, rather than for one-time reading.

Training Courses

When developing training, the first step is set-

tmg goals for the course and identifying the pri-
mary audience. This is typically done in a
brainstorming session with personnel from the

development organization, where packagers
gather information about user needs. Packagers
then meet with the selected instructor(s) to
define the course outline and to choose the best

organization and apportioning of the information
into individual class sessions. Packagers work
with the instructor to determine the appropriate
level of interaction for the various classes based
on the material to be covered. We have found

workshops in which participants can practice
new techniques to be essential when teaching
new skills. Classroom brainstorming and role

playing exercises help students discover new
ways of thinking about familiar subjects, and
lectures are most useful for conveying new
information.

Course developers create a preliminary set of
training materials, including lecture slides, proj-
ect examples and handouts, and workshop exer-
cises. The course is then reviewed for content

and continuity. When the content is stable, the
slides are livened up with graphics and polished
to become a cohesive package that will hold the
participants' interest. At this point, a dry-run of
the course is held as a final review. This allows

the instructor to get comfortable with the mate-
rial and provides a forum for soliciting final
review comments before deployment.

Package Deployment

Deployment is a critical step in the packaging
process. If guidebooks are simply dropped on
people's desks or training courses are simply
announced, the packaging effort is likely to fail.
Software developers must read the books and
attend the courses for the information transfer to

take place. The SEL has found that a publicit).;
campaign is important The people need to

SEW Proceedings 62 SEL-94-006

know that a new guidebook or course is coming,
that it is new and different, that it will be useful
(we show examples), and that their colleagues
(we name them) contributed to it. Those who
were revolved in the package review already
have "bought in," so their marketing help is
solicited. Managers are invited to attend dry
runs of the training courses and to review guide-
books. This is an excellent way of getting their
input and support; managers are in the best
position to encourage their people to attend
training and to use the guidebooks. Briefings at
all-hands meetings and posters also work well to
call attention to a new package.

The SEL has found that guidebooks that are
closely followed by a related training course are
particularly effective for infusing process
change. The training course serves to get users
"into" the guidebook, demonstrating for them

how it can support their work. Training also
provides a forum where revised elements of the
process can be pointed out and clarified.
Accompanying workshops provide a safe envi-

ronment for getting hands-on experience with
new techniques.

3.4Investment in Packaging

In the SEL, we spend about 10% of the software
budget on process improvement activities, of
which a relatively small percentage is spent on
the packaging process described here. Over the
past 5 years, the SEL has spent 1.5% of the total
software budget on packaging: 1% on guide-
books and 0.5% on developing training courses.

During that time, we have tracked costs and
schedules for most of the packages that we have
produced. Our data show that it costs about

24 staff-hours per page to develop guidebooks
and 55 staff hours per hour of class time to
develop training courses. The effort expended
and the relative size of the guidebooks and
training courses are shown in Tables 1 and 2,
respectively. Please note that these numbers
reflect the effort spent by the packagers only;
none of the developers" time (which is relatively
small) is included here.

Table 1. SEL Guidebook Cost and Schedule Data

Guidebook Pages Effort Schedule
(staff-months) (months)

Manager' s Handbook 76 13.2 23

Recommended Approach 200 28.6 30

Ada Supplement 33 5.0 10

Software Measurement Guidebook 131 20.6 20

C Style Guide 89 3.7 4.5

Table 2. SEL Training Course Cost and Schedule Data

Course Class Hours Effort Schedule
(staff-months) (months)

Orientation 6 * 2

Task Leader/ATR Course 12 4.2 5

Recommended Approach 24 8.8 6

Principles of Flight Dynamics 30 * 7

• Effort data not available

SEW Proceedings 63 SEL-94-O06

The calendar time required to develop a package
is harder to predict. For guidebooks, it appears
that the schedule is driven by the scope of the

material; the broader the subject, the longer it
will take. For training, schedule depends more

on the length of the course and the level of detail
presented. Our experience indicates that time to
develop generally depends on how new and dif-
ferent the material and/or the format is and how

difficult it is to capture the experience. For
example, capturing process information for the
Recommended Approach and Ada Supplement
took much longer than distilling information for
the C Style Guide, which addressed a single

product standard.

4. Lessons Learned

Over the past 12 years, the SEL has tried differ-
ent approaches to packaging the software proc-
ess. We have continually improved both our

packaging process and our products based on
user feedback and measured results. Some

guidelines follow for producing successful
guidebooks and training courses based on our
lessons learned.

Standards Should Reflect Local Experience

Standards should be based on the best practices

of what is actually done locally rather than what
an outside source says should be done. Devel-

opers and managers tend to ignore standards that
have little or no connection with their real world.

It's best to introduce the most promising new

methods and techniques from ongoing experi-
ments so that the guidebooks will be current
when released. Where possible, address the

problem areas identified by the developers dur-
ing the interviews and workshops.

It's important to clearly state what is expected to
be done and provide guidance for decision-

making and tailoring. Rarely will a methodol-
ogy be applied exactly as it is specified;
therefore tailoring guidance is extremely impor-
tant. Don't overload the guidebooks with
rationale. If the methodology is based on local

experience, the rationale will be evident to most
users. Training courses provide an opportunity
to elaborate on the methodology in an interactive

setting, and they are an excellent vehicle for

demonstrating its proper application using local

examples.

Design Packages for Ease of Use

Our interviews with developers indicate a typi-
cal usage pattern for SEL packages: developers
initially read a guidebook cover-to-cover or
attend a training course to get the whole story
and then they primarily use the guidebooks and
training materials as references during project
execution. Therefore, the packages are designed
with this type of use in mind. We have found
several key attributes that help usability:

• Keep documents small. It's best if they can fit
in a briefcase.

• Make information easy to locate. Use graph-
ics to guide the eye.

• Use clear direct language and local

terminology.

• Use graphs and pictures to clarify text.

• Provide a good, hierarchical index.

Treat Developers as Customers

Developers and managers are the primary users
of guidebooks and training courses. The prod-
ucts are intended to help them do their jobsbet-
ter. When soliciting their input to support a
packaging effort, we need to treat them as cus-
tome rs:

• Listen to them.

• Solicit their requirements.

• Build useful and usable products for them.

• Keep them involved in package development.

• Don't ask them to do the work. (They are

busy building soRware.)

Dedicate a Small, Highly Skilled Team to

the Packaging Effort

The packagers' job is to gather, distill, and
communicate information based on a thorough

understanding of the environment. This requires
additional skills that are not commonly found

among software developers. For example, peo-
ple skills are extremely important. Packagers
need to be good listeners and interviewers to
elicit information from people. They must be
able to analyze and synthesize information and

SEW Proceedings 64
SEL-94-006

then organize and present the resulting process
effectively. Desk-top publishing and technical

writing skills are also critical to the quality of
the final product.

We have found that a team of three people tends
to be optimum for developing packages. The
team is composed of

• A lead writer or course developer who has

experience in software engineering, but not
necessarily in the local domain,

• A domain or subject matter expert--usually a
manager or senior developer who has exten-
sive experience in the local domain (for
courses, this person may also be the
mstructo0;

• A publication specialist, who has expert

presentation, editing, and desktop publishing
skills.

Don't Get Bogged Down in Detail; Update

Packages Judiciously

Programmers get annoyed and confused when
they arc constantly receiving updates to the
standard process. The amount of maintenance
required to keep standards current depends on
the level of detail in them. We found that it is

best to avoid the detailed "how to" information;
instead, build in space for the process to evolve,

which is happening all the time in an improving
organization. Interim changes, such as updated
cost models and new techniques, can be inte-
grated into training courses and tools. For
example, the SEL updated the Recommended
Approach course twice in 18 months to reflect
change in the local process; whereas the guide-
book on which the course is based has been up-
dated only once in 6 years since its deployment
in its revised form.

Don't include experimental processes in the
standards until they have been tried and proven
beneficial in the local environment. In addition,
keep language-specific standards separate from
process information, because they tend to
change independently. Let the amount of
change in the organization, process, or environ-
mcnt drive when guidebooks and training
courses are updated, rather than a fixed time
interval.

5. Summary

For process improvements to be effectively
infused throughout an organization, they must be
packaged in a useful form. Effective standards,

guidebooks, and training courses cannot be pro-
duced by programmers in their "spare" time. It
takes a focused effort from a team of dedicated

people with the proper skills to capture, synthe-
size, and communicate the improved software
process. The SEL has demonstrated its com-

mitment to broad-based improvement by
investing both time and money in experience
packaging. As a result, we have produced the
high-quality guidebooks and training courses
described in this paper. The investment has paid
off--as it will for other organizations committed
to managing their software process. Today,
software developers in the SEL are building
software faster, better, and cheaper using many
techniques and methods that were considered
experimental only a few years ago.

Acknowledgment

The authors thank Maureen McSharry for her
editorial help in producing this paper and the
corresponding presentation given at the Nine-
teenth Annual Software Engineering Workshop.

References

McGarry, F., G. Page, V. Basili, et al., An Over-
view of the Software Engineering Laboratory,
Software Engineering Laboratory, SEL-94-005,
December 1994

.

.

.

.

Landis, L., F. McGarry, S. Waligora, et al.,
Manager's Handbook for Software Development
(Revision 1), Software Engineering Laboratory,
SEL-84-101, November 1990

Landis, L., S. Waligora, F. McGarry, et al.,
Recommended Approach to Software Develop-
ment (Revision 3), Software Engineering
Laboratory, SEL-81-305, Jul_ 1992

Condon,S., M. Regardie, M. Sta_ and S.
Waligora, Cost and Schedule Estimation Study
Report, Software Engineering Laboratory, SEL-
93-002, November 1993

Kcster, 1L, and L. Landis, Ada Developers'
Supplement to the Recommended Approach,

SEW Proceedings 6 5 S EL-94-006

.

.

Software Engineering Laboratory, SEL-81-
305SP1, November 1993

Doland,J.,_ J.Valett,C StyleGuide,Software

Engineering Laboratory, SEL-94-003, August
1994

Green, S., Software Engineering Laboratory
Cleanroom Process Model, Software Engineer-

ing Laboratory, SEL-914)04, November 1991

,

.

Hendrick, R., D. Kistler, and J. Valett, Software

Management Environment (XME) Concepts and
Architecture (Revision 1), Software Engu_ring
Laboratory, SEL-89-103, September 1992

Doland, J., R. Pajerski, and S. Waligora, Soft-
ware Engineering Laboratory Training Plan,
Software Engineering Laboratory, SEL-93-TP1,
September 1993

SEW Proceedings 66
SEL-94-006

Closing the Loop on Improvement:
Packaging Experience

Sharon Waligora

Linda Landis Jerry Doland

Computer Sciences Corporation

Topics

=What is Experience Packaging?

raThe SEL Packaging Process

==Cost and Schedule

=Package Development Guidelines

_ Software Engineering Laboratory

SEW Proceedings 67 SEL-94-006

Where Does Packaging Fit In?

SEL Process Improvement Paradigm

_-- PACKA_NG

_ Software Engineering Laboratory
SEWllR4

What is Experience Packaging?

i

• Gather information L/" GUIDEBOOKS & STANDARDS

• Analyze experience _ - Mm'mger'# Hand_o_

• Tailor technology I'_ - RecommendedApproach

• Synthesize+

NEW BASELINE MODELS UPDATED PROCESS -

• Code reading and inspections

• Object-oriented design

I __P__" I • Romp_
• Domain analysis
• Limited structural testing

_ S oflw#we Engineering Laboratory
SEV_ 1_4 4

SEW Proceedings 68
SEL-94-006

SEL Guidebooks, Tools, and Training

Guidebooks Training

Baseline Packages:
Manager's Handbook
Recommended Approach to

Software Development
Guide to Cost Estimation

Tailored Packages:
Ada Supplement to

Recommended Approach
C Style Guide
Cleanroom Process Handbook

SEL Training Plan

Courses:

Orientation

Principles of Flight Dynamics

Recommended Approach
Task Leader/ATR

Tools

Software Management Environment
Automated data collection

_ Software Engineering Laboratory
SFW11/_4 5

Are SEL Packages Used?

Guidebooks

• Survey of 110 developers, maintainers, and managers

- 89% have used guidebooks

- 76% of project leaders and managers use guidebooks regularly

- 95% of developers found the guidebooks fairly easy to use and
understand

Training

• Course evaluations show

- 95% of participants found course content directly applicable to
their jobs

- Most participants felt training was valuable and worth their
time

_ Soltware Engine_ing Laboratory
Sk'W1 riD4

SEW Proceedings 69 SEL-94-006

Typical Shelfware DevelopmentTOPICS FOR

STANDARDS

RENEWERS

,I-_ R •

PUBLISHED STANDARDS

_ Software Engineering Laboratory

SEW11_4 7

SEL Experience Packaging Process

• PROJECT EXPERI"ENNCES ' _'J_ _J I n NEW TECHNOLOGY

• CURRENT PROCESS __ _ H " EXPERIMENT RESULTS I

J"v_OPOSEDnMPROVEMEN_I _

REVISED PROCESS & _"_

DRAFT PACKAGES _Ti_ib__
t.ml]_JK m

DEVELOPERS EXPERIENCE
PACKAGERS

: GUIDEBOOKSTRAINING

__ Saftware Engineering Laboratory
SEWII_ 8

SEW Proceedings 70 SEL-94-006

How Much Does a Package Cost?

• Cost models

- Guidebooks = 24 staff-hours per page

- Training = 55 staff-hours per class hour

• 1.5% of software budget is spent on packaging

- Approximately 1% on guidebooks

- Approximately 0.5 % on training courses

Guidebooks Trainin 9 Courses

staff- staff- class

months pages months hours

Manager's Handbook 13.0 76 Orientation Course 6

Recommended Approach 28.6 200 Principles of Flight Dynamics 30
to Software Development

Recommended Approach 8.8 24
Ada Supplement 5.0 33

Task Leader/ATR 4.2 12
C Style Guide 3.7 89

"data unavazlab_e

Note: Process improvement is 1¢</oof tofal SEL software budget

i_- Software Engineering Laboratory

SEWM_4

How Long Does it Take to Develop a Package?

• Time to develop is dependent on

- Novelty of material and format

- Availability of packagers

- Ease/difficulty of capturing experience data

Guidebooks Training Courses

301 _ 12L_ _

25 23

20 j 10

months 15 I months 8 6 7

10 6 5
10 4

5 2

C Ada Mgr Rec Orient TLJATR RA PFD
Style Suppl Hdbk App 6 hr 12 hr 24 hr 30 hr

Driven by scope of material Driven by length of course
and level of detail

,_t_' Software Engineering Laboratory

SEW11/94 lO

SEW Proceedings 71 S EL-94-006

Guidebooks Should Reflect Local Experience

• Document the best practices

- From local domain experiences (what is)

- Not from outside experts (not what should be)

• Introduce most promising new methods and
technologies from successful experiments

• Address problem areas identified by developers

• Clearly state what process/method is expected

• Provide guidance for decision-making and tailoring

• Do not overload with rationale

• Use training courses to expand, show good examples,
and to explain rationale

_j Software Engineering Laboratory
SEW_I,S4 11

Design Packages for Ease of Use

• Keep documents small

• Make information easy to locate (index,
icons, graphics)

• Present material clearly and directly

• Use local terminology

• Prototype to get early feedback on package
"look and feel"

l lf you can't find information and understand it, you can't use it. J

_ Software Engineering Laboratory
SEW11/94

12

SEW Proceedings 72 SEL-94-006

Treat Developers as Customers

• Developers are the users for guidebooks and
training

• Experienced developers are the key source of
information

• Treat developers as customers

- Listen to them

- Solicit requirements

-Build useful products

- Keep them involved in package development

- Don't ask them to do the work

_ Software Engineering Laboratory

SE'W_ 1/94 13

Dedicate a Small, Highly Skilled Team
to Packaging Effort

f
_ Software Engineering Laboratory

• Packagers gather, distill, and communicate information based on a
thorough understanding of the environment

• Packaging team

- Lead writer or course developer

- Domain or subject expert

- Publication specialist

• Packager expertise

- Software development experience

- Good interviewing and listening skills

- Strong interpersonal skills

- Able to analyze, synthesize, and
organize information

- Presentation skills

- Technical writing

- Desktop publishing

SEW11/94 14

SEW Proceedings 73 SEL-94-006

Update Packages Judiciously

• Guidebook maintenance depends on level of detail

- Avoid detailed "how-to" information

- Build in space for process to evolve

• Use training courses and tools to integrate interim

changes

- Cost model updates

- New technique guidelines

• Include experimental processes when proven locally

• Separate language standards/style from process

descriptions

• Update guidebooks when the organization, process, or
environment changes significantly

_i Software Engineering Laboratory
SEW11/9_ 15

SEL Package Development History

Package Updates 1982 1984 1986 1988 1990 1992 1994

Manager's Handbook

Recommended

Approach SW Devel

Generalized OOD

Ada Style Guide

Cleanroom Process
Handbook

Ada Supplement

C Style Guide

A

A

V

A

W
• interim

.................... . UIxlated

A

_ Software Engineering Laboratory

V

A
V

@

SEL-94-006
SEW Proceedings 74

SEL Experience Packaging Closes the Loop

• PROJECT EXPERIENCES

• CURRENT PROCESS
• PROPOSED IMPROVEMENTS

REVISED PROCESS &

DRAFT PACKAGES

DEVELOPERS

I_ :"_"_"°'_* I
EXPERIMENT RESULTS

EXPERIENCE

1 PACKAGERS

r • GUIDEBOOKS I ___A

_ Software Engineering Laboratory
SEW11/94 17

SEW Proceedings 75 SEL-94-006

SEW Proceedings 76
SEL-94-006

J

Session 2: Process

Process Maturity Progress at Motorola Cellular Systems Division

Alan Willey, Motorola

The Personal Software Process: Downscaling the Factory ?

Daniel Roy, Software Engineering Institute

PRECEDING PAGE BL,,,"_-_KNOT FILMer3

SEW Proceedings 7 7 S EL-94-006

SEW Proceedings 78 SEL-94-006

!_;) = 0 !/,,1_

Process Maturity Progress at Motorola Cellular Systems Division

Ron Borgstahl

Mark Criscionci_: -
Kim Dobson " j_

Allan Willey

Motorola Cellular Systems Division
Arlington Heights, IL ..,-.,

email: {borgstal I criscion I dobson Iwilley }@cig.mot.com

Introduction

This year the CellularSystems Division of Motor-
ola submitted an application to the IEEE Computer

Society for a Software Process Achievement

Award. We placed second overall, with the Award

going to our hosts, the Software Engineering Labo-
ratory. In our application for the award we made

public results of more than five years of effort we

have been undertaking to improve our software pro-
ceSseS.

Like many large software development

organizations, we have experienced our share of

customers who complain about product defects,
failure to meet schedule commitments, and our

inability to provide the software functionality they

are demanding. By early 1990, the staffhad come to

recognize that the software processes in place were

inadequate to meet our customer needs. Thus, in
1990 we began using the SEI Process Maturity

Model (PMM) and Humphrey's Managing the
Software Processl to help us define the

requirements for a more mature software process.

Our ultimate goals were (and still are) to improve:
- our customer's satisfaction,

- our product quality,

- our on-time delivery record, and

- our productivity.

In April of 1991, a team of SEI-trained assessors,
both from SEI and from across Motorola, assessed

our organization at Level 1. Then in late 1991 we

were presented with a classic example of "require-

ments creep" when the SEI announced their first
draft version Capability Maturity Model (CMM) 2

which was intended to replace the PMM. Careful
review lead us to conclude that we had no choice

but to adapt this more rigorous and detailed set of

process requirements. We found to our delight that

the software process architecture we developed,

which was implicit in IEEE Std 1074-1991 "Stan-

dard for Developing Software Life Cycle Pro-
cesses, "'3 was robust enough to meet the new CMM

requirements. What needed attention were the "pro-

cess specifications." These would have to be far
more detailed to assure conformance to the CMM

requirements. We had previously formed working

groups to write process specifications for all pro-
cesses, and now we began to identify the changes

needed to meet the new CMM requirements. Next,

we prioritized our efforts based on the CMM five-
level model.

In June of 1993, after months of implementing this

Software Process Improvement (SPI) Plan, we were

re-assessed formally (using the PMM) at Level 2.

More importantly, as more of our processes have

begun to conform to the CMM requirements, we

have begun to demonstrate significant measurable

improvement in delivered product quality and on-

time delivery, delivering more functionality to a

more-satisfied customer, as accompanying data will

support. Our data gathering activities have lagged
behind other process changes, and key process mea-

sures were not routinely made before 1992, but we

think that it is important to keep in mind that the

data presented covering the last six quarters effec-

tively represent results of process improvements

underway since early 1991.

To support the Nomination of the SPI team at CSD

a set of representative data was prepared. We pre-

sented data from a single product software develop-

merit group representing about three hundred

developers in our division. Since the submission of
this application we have continued our efforts, and
new data continues to demonstrate the benefits. We
will review all of the data we have available to us at

this time, which represents the time frame from the

first quarter of 1992 to the end of the second quarter
of 1994. Data from all projects completed by this

product group and released to customers in that

lime frame are included. Six charts will be pre-
sented.

Figure 1

This figure shows our progress made in achieving

SEW Proceedings 79

PRECEDING PAGE BLANK NOT F_t_,'iED

SEL-94-O06

Process Maturity Progress at Motorola Cellular Systems Division

compliance with the requirements of the six Level

2 Key Process Areas (KPAs) named in the SEI

CMM, Requirements Management (RM), Project

Planning (laP), Project Tracking (PT),

Subcontractor Management (SM), Quality

Assurance (QA), and Configuration Management

(CM).

An internally-developed procedure is used to assess

compliance, and each developmem group conducts
quarterly intemal self-assessments. 4 The

assessment procedure focuses on key practices
described in the CMM, and compliance is

contingent upon evidence of the presence of each

key practice. The "percent compliance" described
in this Figure is therefore the mean percent

compliance of all of the key practices in each KPA
which are evident to the assessment team. Outside

team members from other development

organizatiom and from the software quality
assurance organization participate in these
assessments to assure more-uniform and rigorous

scoring.

The first round of these assessments was held in the

third quarter of 1992, and the results of that

assessment are compared to the current scores. The

entire development organization was assessed at

Level 2 using the PMM in June of 1993, but this

development group had not yet achieved complete

compliance with all of the requirements of the
CMM at that time. However, since then significant

progress has been made, and full implementation of
all the key practices described in each KPA is now
evident.

Figure 2

With the completion of our formal Serf-assessment
in June 1993, when we were rated at Level 2, the

entire organization has moved forward with an
initial assessment of our status with respect to the

key practices found in Level 3 KPAs using our self-

assessment procedure. The initial scores of this

development group am presented in this chart. The
initial c.xxmlusion one might draw from this chart is

that the group is far from compliant with the

requirements for Level 3. In view of our initial
scores on the Level 2 Key Process Areas, however,

we are confident that the group can be expected to

make rapid progress toward compliance. Combined

with the information presented in Figure 1, we can
see that the group is in full compliance with Level

2 KPAs, and working on improvements on the
Level 3 KPAs.

Figure 3

A customer survey is conducted regularly by an

independent market research firm using a

"Motorola Confidential Proprietary" survey

questionnaire. In constructing this survey

questionnaire "Key Drivers" have been identified

which represent our effort to measure what our
customers think is important. Each satisfaction

survey measures our performance on these Key

Drivers. Figure 3 compares our percent

improvement in this product group for the Key
Driverswhich are concerned with software, in

comparison to our performance in 1991. Since the

survey contents and results are confidential, we
have represented our progress by means of an

index, with year-end 1991 results being "1," and

year-end 1992 and 1993, and year-to-date 1994

being shown relative to that index quantity.

Figure 4

To explain Figure 4, some specific definitions are

required.

Customer Found Defects are those post-release

defects which are found by the customer. This does

not include post-release defects found by Motorola

internally, or defects of which customers have been
notified before these customers find them.

Each customer found defect is recorded based upon
the release in which it is found. A "window of

opportunity" to find defects exists for each
successive release. For a particular release, the first

opportunity to find and report defects occurs at the
time the first customer installs it. Defects in that

release can be found by customers up to the time the

last customer using that release retires it. Most
releases are in use about 12 to 18 months. When a

release is made in a particular quarter, and defects

are reported against that release, the number of
Customer Found Defects for all releases in that

quarter is incremented. Over time, if additional
defects against that release are reported, the

quarterly total of defects for releases in that quarter
is incremented. As releases are retired, since defects

SEW Proceedings 80 SEL-94-006

Process Maturity Progress at Motorola Cellular Systems Division

can no kruger be reported further against them, the

total defect count becomes fixed. Our experience,
like most software developers, is that most

Customer Found Defects ever found are reported in

the first quarter of use.

Delta KAELOC is the size of the added, deleted,

and modified source code expressed in thousands of

Assembly=Equivalent Lines of Code.This number
is calculated based on a factor specific to each

programming language used using the table

provided by Capers Jones of SPR, Inc.

Total KAELOC is the total size of the released

software expressed in thousands of Assembly-

Equivalent Lines of Code. This number is
calculated based on a factor specific to each

programming language used.

Figure 4 demonstrates that in this time period the
number of customer found defects has continued to

decline, and that our most-recent releases are

approaching 6 sigma quality.

Figure 5

Delay in delivery of promised software releases is a

key contributor to customer dissatisfaction. In all of

our product groups, release dates are forecast at the

time of "project initiation" when the release project
plan is approved and development begins. Figure 5

records for each release in a quarter how long after
the forecasted release date the actual release

occurred. Coincidentally, there has been one release

per quarter for this product for the last two years.

Figure 5 shows a step-function improvement
occurred in on-time deliveries between the releases

in the second and third quarters of 1992. This came

about primarily through better management

controls in project planning and project tracking.
Demonstrating that we are still a Level 2

organization, one release was delayed significantly

in the second quarter of 1993 because of a delay in

delivery of a vendor's code, and because some key

staff members were temporarily reassigned to

another project. In the fourth quarter of 1993

another release was delayed because of extended

negotiations with a key customer on feature content

for the release. This experience clearly highlights

why both subcontractor management, project

tracking, and requirements are key contributors to

customer satisfaction. A note of explanation about

the seeming lack of data for the first quarter of
1993. In fact, this release was exactly on time, thus

the delay was zero months.

Figure 6

More and more functionality is being demanded by

our customers, and with each new release we place

more functionality into the customer's hands.

Figure 6 demonstrates the extent to which the
mount of new code (Delta KAELOC, as defined in

the note to Figure 4) is growing at each release. In

data not presented here we have measured that our
productivity in terms of the number of lines of code

produced by each software engineer has more than
doubled in this time. Thus, while we have added

staff, the staff has continued to increase the amount

of code being delivered. The decline in the total
number of new lines of code evident in 1994 results

from the fact that this product development group is

in the midst of a major product upgrade this year

and only small, point releases have been made this

year while most work continues to focus on the

planned major upgrade to occur in the first quarter
of 1995.

Returning to a topic mentioned in the note to Figure

4 we want to reiterate that even though we have
increased the number of lines of code delivered

with each new release by seven-fold, we are still

seeing a significant decline in the number of
customer-found defects in these releases. Stated

simply, we are releasing more functionality to our

customers, with higher productivity, and with fewer
defects.

Summary

We believe that the key success elements are related
to our recognition that Software Process Improve-

ment (SPI) can and should be organized, planned,

managed, and measured as if it were a project to

develop a new process, analogous to a software

product. In summary, we believe that our process

improvements have come as the result of these key
elements:

use of a rigorous, detailed requirements set
(CMM),

use of a robust, yet flexible architecture (IEEE
1074),

SEW Proceedings 81 SEL-94-006

Process Maturity Progress at Motorola Cellular Systems Division

use of a SPI project, resourc_ and managed
like other work, to produce the specifications

and implement them, and
development of both imernal and external

goals, with metrics to support them.

We have achieved significant, measurable results as
a result of these efforts, and we want to share these

findings with a broad industry audience. Our efforts

may be viewed as unique in the sense that our
business is entirely commercial and we have no

customer pressu_ to adopt any particular paradigm

for improvement, yet we selected the SEI Process

Maturity Model and have successfully used the

requirements of this Model to drive software

process improvements. In a sense, we have
validated this Model for change, and used it to

substantially change our development processes

and the customer's view of our product.

References

1. Humphrey, Watts S. Managing the Software Pro-
cess, Addison-Wesley Publishing Company, Read-

ing,/viA, 1989.

2. Paulk, Mark C., et al. Capability Maturity Model

for Software, Version 1.1, Software Engineering
Institute, Carnegie MeUon University, Pittsburgh,

PA, February, 1993.

3. IEEE Std. 1074-1991 IEEE Standard for Devel-

oping Software Life Cycle Processes, Approved

September, 1991. The Institute of Electrical and

Electronics Engineers, Inc.

4. Daskalantonakis, Michael "Achieving Higher

SEI Levels" in IEEE Software, July, 1994, p. 17.

SEW Proceedings 82
SEL-94-O06

(_ MOTOROLA
Cellular InfrasU,Jcture Group

Presentation to:

Nineteenth Annual

Software Engineering Workshop

Allan Willey

Member, Technical Staff
Cellular Infrastructure Group

November 30, 1994

(_ MOTOROLA
Cellular Infrastructure Group

Topics

• Introduction

• Our Experiences

• Results

• Summary

• Lessons Learned

gU SEW
November 30, 1994

SEW Proceedings 83 SEL-94-006

'-- (/_) MO'I'OROLA ,
Cellular Infrastructure Group

Congratulations to the SEL!

• Winner of the IEEE Computer Society Software
Process Achievement Award for 1994

• Motorola's Cellular Systems Division (CSD) was
"First Runner Up"

• We are the "Avis" of Process Achievement this
year, and "trying harder."

ALW - Z

19m SEW
November30, 1_4 _

MOTOROLA
Cellular Infrasm_cture Group

Motorola Cellular
Systems Division (CSD)

• Approximately 1,000 in the R & D Division

• Four locations:

- Arlington Heights, IL, USA
- Cork, Ireland
- Tel Aviv, Israel

- Ft. Worth, TX (the fourth country)

• Data presented here is for the EMX 2500

Switch Software Development Group
(-300 staff)

_d.W - 3

t*_t,emb_ 30, 1_

SEW Proceedings 84 SEL-94-006

MOTOROLA

Cellular Infrastructure Group

CSD Key Events

• Motorola has a corporate software engineer-
ing goal to achieve SEI Level 3 by YE'95

• CSD had first SEI Self-assessment in Nov.'90

- Level 1 (are you surprised?)

• Second Self-assessment, June'93
- Level 2 (phew! Made it)

• Third Self-assessment scheduled next week

ALW- 4

19th SEW
November 30, 1994

MOTOROLA
Cellular InfrasmJcture Group

CSD Key Strategy
Decisions

1. Use SEI 5-level Model for "Requirements"

2. Use IEEE 1074 for the "Design"

3. Implement a "Process Improvement"
Project

ALW- $

19m SEW
November 30, 1994 i

SEW Proceedings 85 S EL-94-006

MOTOROLA
Cellular Infrastructure Group

Summary of Results

• Progressive improvements in
"Process Maturity"

• Continuous improvements in quality,
productivity, on-time delivery, and customer
satisfaction

• "Quantum leap" in the quality of work life

ALW- 6

19th SEW
November 30, 1994

100%

90=/o

l FIGURE 1 - SEI CMM Level 2 - Key Process Area Corr_iance (Self-Scorecl) I

RM PP PT SM QA CM

m 3092 • Current

SEW Proceedings 86
SEL-94-006

I FIGURE 2 - SEI CMM Level 3 - Key Process Area Compliatce (Self-Scored) l

70%

°1
5O%

i
i

" ' i'"
30%

20 .!1 o• ., .,
0%

PF PD IM IC

m
m
m
m
m

PR

I FIGURE 3 - Customer Satistaction (Software)]

YE 91 YE 92 YE 93

w

m

YTD 94

SEW Proceedings 87 SEL-94-006

I FIGURE 4 - Software Quality (Defect Deflsit_)]

10.000 i__4 Sig m

,\1.000 j

0.100 ._

0,010

0.001

i
I

-- 6 sign la

Y

_ Customer Found Delects / Delta KAELOC 'B, Customer Found Delects I Total KAELOC

I FIGURE 5 - Soltware Del_ry (Months Delay) j

!
I
I
-'; !
I I _ • I []

SEW Proceedings 88 SEL-94-006

45O

4OO

35O

3OO

25O

_50

100 '

S43_

O"

IQ92

I FIGURE 6 - Software Funct_0c_al_ (Delta KAELOC) I

I

2Q92 3Q92 4Q92 1Q93 2Q93 3_3 4Q93

'v

1Q94

De_a KAELOC i

o

I
2Q94

_lm C=roup

Lessons Learned

ALW - 7

• "Plan your work"--in this case Process
Improvement

• =Work your plan"-in this case the
Process Improvement Project Plan

• This Project has:
- Requirements Specifications
- Design Architecture
- Implementation Phases
- Verification and &Validation Phases

30, 1994

SEW Proceedings
89 SEL-94-006

SEW Proceedings 90 SEL-94-006

N95- 31240

The Personal Software Process:

Downscaling the factory?

Daniel M. Roy

Software Technology, Process and People (STPP)

20 Forest Rd. Bradford Woods, PA 15015

(412) 934 0943 E-maih dmr@sei.cmu.edu

(Visiting scientist, SEI)

r_

!

t

Abstract: It is argued that the next wave of software process improvement
(SPI) activities will be based on a People-centered paradigm. The most
promising such paradigm, Watts Humphrey's Personal Software Process
(PSP) is summarized and its advantages are listed. The concepts of the PSP
are shown to also fit a down-scaled version of Basili's experience factory. The
author's data and lessons leamed while practicing the PSP are presented
along with personal experience, observations and advice from the perspective
of a consultant and teacher for the Personal Software Process.

PRECED_t_G PAGE I_LAhlK NOT F_/IL.O
SEW Proceedings

91 SEL-94-006

1 Toward a People-centered SPI paradigm

The Capability Maturity Model (CMM) and CMM-based SPI paradigms have had a profound

impact on the organizational practices within the software industry [Herbsleb-94]. Other SPI

paradigms such as the experience factory have been demonstrating the value of experiment

based software improvement for over 15 years [IEEE-94]. In spite of these progress, we tech-

nologists, process advocates and other change agents still have to fight an entrenched and

pernicious resistance.

To better ascertain what to do about this, we must understand where we have been and where

we want to go next. As Basili puts it in [Basili-89]:

'We have evolved from focusing on the project, e.g. schedule and re-

source allocation concerns, to focusing on the product, e.g. reliability

and maintenance concerns, to focusing on the process, e.g. improved

methods and process models'

However, addressing the practitioner's resistance from healthy skepticism to outright obscu-

rantism is not a technical problem; it is a human concern. Perhaps accelerated progress re-

quires that we now continue the evolution by focusing on the People, e.g. individual education

and practices based on individual self improvement.

Major relatively new concepts such as the CMM or the experience factory are both intellectu-

ally satisfying and daunting to practice at the individual level. As a programmer, I may well un-

derstand the importance of the practices of the subcontract management KPA while at the

same time failing to relate to any of them in my individual work. As a reuse technologist, I may

be totally convinced that my company should operate as an experience factory while at the

same time having no idea how to incorporate the concepts in my day to day practice.

Conversely, I may be highly skeptical of 'their' SCEs, 'their' pilot project, and God knows what
other latest fad. I will remain unconvinced until 'they' show me that it will really work for me. I

may have heard good things about clean room, I may even have watched a convincing pre-

sentation at the Software Engineering Workshop about it. If I have never personally experi-

enced it, it will remain alien to me, something even vaguely frightening that I will keep resisting.

In the word of a most famous (and anonymous) Chinese proverb:

'1 hear and I forget, I see and I remember, I do and I understand'

A more personal and more practical approach to software improvement where the individual

practitioner learn by doing, may be needed to accelerate the transition of better engineering

practices throughout our organizations.

SEW Proceedings 92
SEL-94-006

2 The Personal Software Process

As students, we typically practice on toy problems in programming language classes. Our ad

hoc processes are sufficient to produce moderate size programs quickly and get a passing

grade. As programmers we quickly discover that these student practices do not scale up but

what can we do?. The product must be out the door if we want to work on the next one. There

is very little time to experiment with something unproven.

The personal software process was developed by Watts Humphrey to indoctrinate students

(in university and industry alike) in the use of large scale methods based on the CMM. To

quote Watts in [Humphrey-95], the PSP...

'... scales down industrial software practices to fit the needs of small scale

program development. It then walks you through a progressive sequence of

software processes that provide a sound foundation for large-scale software

development'

Using fairly simple and well proven engineering principles, the PSP student plans his work,

enacts a well defined process, building the product while gathering data, and performs a post

mortem that seeds the next improvement cycle. This personal approach to software improve-

ment offers the following advantages:

• By having to adhere to more disciplined practices, students learn a lot about
process, engineering, and software improvement. Most becomemotivatedto
learn even more about their field

• By gathering their own private data, students quickly build a significant
experience base which allow them to set new goals, perform the next
experiment and check the results against the goals

• Since the data is personal and private, PSP practitioners need no convincing
from anyone about the value of a process step or a technology. They know
whether it works for them or not based on their own quantitative results

• Armed with their own productivity and quality statistics, practitioners of the
PSP are better able to make commitments they can meet. They can also
better resist unreasonable commitment pressures

The PSP course leads the student to the gradual application of software engineering discipline

through a set of 10 assignments:

1. Average and standard deviation using linked list

2. Physical line counter

3. Object LOC counter (build on 2)

4. Linear regression using linked list (build on 1)

5. Standard distribution (integration by the method of Simpson)

6. Linear correlation (build on 5)

SEW Proceedings 93 SEL-94-006

7. Confidence intervals (build on 5 & 6)

8. Sorting a set of numbers in ascending order

9. Performing statistical fit tests on the above data

10.Computing muti-linear regression coefficients (by solving a system of linear
equations)

These simple exercises were found to have the following advantages:

• Simplicity without being trivial.

• Fostering reuse and good object oriented development practices

• Gradually building a small PSP support toolset

The PSP data shown on the transparencies was collected during Watts Humphrey's Spring 94

course for the Master of Software Engineering at CMU.

SEW Proceedings 94 SEL-94-006

3 Personal data, experience, and lessons learned

Several PSP reports have to be written as part of the course detailing:

• Evolution of size and time estimates accuracy

• Pareto charts and checklist for defects

• Defect injection and removal trends

• Cost per defect type and injection/removal phases

• Process development process for PSP reports

• Detailed process analysis such as A/F ratio

• Lessons learned

• Future steps

The large number of graphs could not be reproduced here or even shown during the talk.

Watts Humphrey's data analysis diskette (which can be obtained with the book [Humphrey-

95]) includes an optimum set of Excel templates and macros for PSP data analysis. I found it

very useful to track my progress and accelerate the routine of the post mortem analysis.

A central part of my talk dealt with the application of the concepts of experience factory to my

PSP results. The experience gathered can be summarized as follow:

• The accuracy of my time and size estimates improved from +-40% to +-20%
over the 10 assignments of the PSP.

• The PSP linear regression model helped me increase the accuracy of my
size estimates. The multi linear coefficients computed by program 10 offer
great potential to similarly increase the accuracy of my time estimates.

• The percentage of development time spent compiling decreased from 15%
to 5%.

• My productivity during the development phase remained at 20 LOC/hr.

• I made a humiliating number of syntax errors with a language I know well until
I truly inspected my code BEFORE compiling it.

• My error injection rate decreased from 180/kLOC to 30/kLOC and from 4
defect/hr to less than 1 defect/hr.

• From assignment 4 on, the sum of my code reuse and code developed for
reuse stayed at about 80%.

• Defect fix cost varied from 1 min/defect to 8 min/defect depending on phase
injected/removed.

• The process development process I enacted to develop a report
development process for my PSP experience reports was an overkill. But I
learned a lot trying that hard.

Building on this experience, I have applied the GQM paradigm to the definition of my next pro-

cess improvement steps:

SEW Proceedings 9.5 SEL-94-006

• Reduce my error injection rate to less than 20 defects/kLOC

• Improve my error detection processes

• Keep design and code inspection yields above 50%

• Keep formal pre-compile inspection yield above 80%

• Strive for zero compile error

• Improve my testing process to a yield over 50%

• Keep containing costs

• Keep personal and informal review rates above 200 LOC/hr

• Keep formal inspection rates above 100 LOC/hr

• Increase reuse

• Either assemble 80% of the software out of reusable components

• Or make reusable components out of at least 50% of the new code

• Formalize the experience gathered with the PSP by applying experience
factory concepts

SEW Proceedings 96 SEL-94-006

4 Teaching the PSP

SEI has already conducted one 'Train the trainer' course In Pittsburgh from October to Decem-

ber 1994. I taught the 2 lectures on design in that occasion. Besides the usual lessons learned

from our own lectures, I think all instructors agreed that:

• The PSP is not your usual "teach and run" course

• Serious commitment is necessary from both student and sponsor

• A qualified instructor is necessary to get long term results

The PSP is about behavioral change. It is not a typical lecture course. It is a 200 hr intensive

educational experience. The lectures are but the tip of the iceberg. The instructor must spend

a significant amount of time tutoring the student in the correct implementation of the organiza-

tion's process. The students don't just sit there either, they write working programs. These pro-

grams have to be reviewed and corrected. The process must be analyzed and feedback must

be given. The PSP is more like a complete training program (in the sense of the CMM level 2

KPA) and typically spans 20 weeks. Strong commitments are necessary:

• from the student to honestly work the exercises, improve his process, and to
finish the course

• from the sponsor to allow the time necessary for the lectures and for part of
the implementation of the programs (typically shared 50/50 between sponsor
and student)

Best resuts are seen when the sponsor treats the PSP assignment as any other (assuming

correct project tracking and oversight practices). This means that the student's assignments

are integral part of the workday and are part of his deliverables.

The PSP also requires a dedicated and qualified instructor with demonstrated programming

and software management experience. Based on historical data, the effort necessary to cor-

rectly teach the PSP is roughly:

• Lecture preparation: 2-4hrs/lecture

• Tutoring: 5-10 hrs/student

• Program & process analysis: 2-10 hrs/student

Anything less has a great chance of failing to make a lasting difference in the disciplined, qual-

ity-driven individual practices demonstrated in the PSP course.

SEW Proceedings 97 SEL-94-006

5 Conclusions

The PSP gives me the opportunity to improve the quality of the software I produce by offering

a framework for objective measurement and improvement of my practices. However, the ac-

curacy and the consistency of the data gathering process is paramount. Watts made this point

very clear throughout the course. Nevertheless, it took me quite a while to truly understand

why. I believe that a strict data inspection process should be enacted and particularly strongly

enforced at the beginning of a PSP course to ensure that all students start on the right foot. I

also believe that the postmortem phase should be expanded to include the systematic analysis

and archiving of lessons learned with the assignment at hand. I have modified my own PSP

accordingly.

I believe that the PSP is not only about scaling down the CMM. It can also be seen as a scaled

down experience factory. It is because the PSP encompasses such an elegant synthesis of

large scale methods that it will power the next wave of software practice improvement.

By practicing the PSP, I have learned a great deal about enacting, improving and even devel-

oping personal processes. I have carried the very simple principles of the PSP and the process

development methodology described in chapter 13 of [Humphrey-95] to other processes:

• The organization of my work day

• A consulting personal process

• A process to perform Rate Monotonic Analysis

• A family of processes to write papers and reports.

These have been very exciting first steps.

SEW Proceedings 98 SEL-94-006

6 Bibliography

[Basili-94] Victor Basili at. al., 'The Experimental Paradigm in Software Engineering', Experi-

mental Software Engineering issues, Springer-Verlag, 1994.

[Herbsleb-94] James D. Herbsleb and David Zubrow, 'Software Process Improvement: An

Analysis of Assessment Data and Outcomes', Technical report CMU/SEI-94-TR7, September

1994.

[IEEE-94] IEEE, 'IEEE Computer Society Award for Software Process Achievement, Nomina-

tion of 1994 Award Winner', Information bulletin, May 1994.

[Park-92] Robert E. Park, 'Software Size Measurement: A Framework for Counting Source

Statements', Technical report CMU/SEI-92-TR-20, September 1992.

[Humphrey-95] Watts S. Humphrey, 'A discipline for Software Engineering', Addison Wesley,

January 1995.

SEW Proceedings 99 SEL-94-006

_ _ U m_tcs_

_ Soflr_mre Engi_ring hl_e

The PSP: Downscaling
the factory?

Daniel M. Roy, SEL workshop, December 1994

Software Engineering Institute
Carnegie Mellon University
Pittsburgh PA 15213

Sponsored by the U.S. Department of Defense

Software Engi_rlng InsIHtule

Agenda 1

The Personal Software Process (PSP)

Some preliminary results

SEL experience factory

Scaling down the models: The experience workshop

I Pl_=m _ v,ork o6reced for imfoww=l_.w

SEW Proceedings 100 SEL-94-006

C._ MemonU_
Sollvmm Englnoertng Insltlute

The Personal Software Process

Programming language class practices do not scale up

Corporate wide efforts encounter increasing resistance
on the way down.

The PSP:

"Scales down industrial software practices to
fit the needs of small scale program
development. It then walks you through a
progressive sequence of software processes
that pro vide a sound foundation for large-scale
software development. ,,1

]. Wags Humplm:y, "A d_rJpIt_: of aoftwal¢ enlpr<cnng- ' ,_ld=_ WcsAcy, _ 1994

w Sere,am Sngh_ee_ On#t_e

KPAs scaled down for the PSP
OPTIMIZING

co._nuousuy #.prov_g prom=s;
quanfftsti_/e,_/u_r

pmdlctame p¢oceu; detailed
Woee_ mm pmm_
mNmurw ¢olhelW

DEFINED

INITIAL
mcl tm¢, chaotic

IPCProcess _ managenwnt
TX Technology innovation
oe OoMcI pre'mntlon

_ O,,_W/mm_mm
Pa Proc_m _ & mmly,z_

SEW Proceedings 101 SEL-94-006

m

Software Engineering Instltute

The PSP Evolution 1
Org. (CMM)

t process

I PSP3 l Team processCyclic PSP Cyclic development /

t
Personal
quality
management

Personal
planning

Baseline PSP

PSP2

Code reviews
Design reviews

PSP1

Size estimating
Test report

PSP2.1 JDesign templates

PSP1.1

Task planning
Schedule planing

l_PO PSPO. 1 II
Current processJ Coding std, PIP J

Time/Defect J Size measuremen_
recording & std' j

I Waus Humph_ y. "A dZS_l_ne of solrwatc cngm_'mg', ,au:k_on wesley, 13_c_mbet t994

m

Cam,_l_ M_on UnMw-.ay

_mvw'oEnoa_i_ One®

The Experience Factory context 1

Project Organization

Characterize J

environment

Set goals J

Choose process j 9

Execut_n plans

Execute proces_ -:

Collect data]

FactoryExperience

Project/environmentcharacterist%

)rocesses,tools,components,models

_rojectanalysis,processmodificationI

IData,lessonslearned II=

I. From "Tic E_pcnmcJt _1 Plradzpn in Sohwlr¢ _g, E_l_Ct.ltOlJJ So(Ivl¢ FJ_ipcnmg ='. Romi]clt. Bzslli, ._¢lb)'. Spl_lp_r- Vcr|_

SEW Proceedings 1 02 S EL-94-006

w

C4rr_gm Melon Unn_sWy

Software Engineering Instllute

The Experience

Project Organization

Factory structure I

Experience Factory

Data, lessons learne0 Analysis

Experience _J F:i_omralize

tOOlS, consulting I L - J

[

I From "The Expcrmaenlal Pa¢_ q_m m So(iwatc FJ_lnccnng. Eapcnmcnllll So(t vear¢ F.n[mccJcn 8 Jl_acs'. Rom blch. B4_li. Sdby. $ Fongcr- Vcxlag

w
Softwwe Engineering Inslltute

The PSP assignments as experiments

Goal:

• Actual staff-hours will be within 20% of estimates
80% of the time.

Questions:

• How do I predict my effort now?
• How do I measure the actual effort?
• How do I track actual against estimates?
• What is the dispersion now?

• If I had a data base of these, I could get statistics

Metrics:

• Estimate in mn before, measure actuals during
• Compute linear regression and confidence intervals

from the data base. Accuracy is given by stats.

SEW Proceedings 103 SEL-94-006

Software Engineering Institute

ActuaISize Range

900
=

800
70O

600

500
0
._ 400

30O

20O

IO0

0

/ \\

-I- r t) f

C"J ("') ":3" I.-¢3 ' _ P"" _ 0"3 C:_
,p._

Program Number

Max

Min

Avg

_ C=mme M=b_UrMm_

Software Engineering Instltutl

h.
O
h.

u3

Size Estimating Error Range

5O0

400

300

200

100

0

-100

1 2 3 4 5 6 7 8 9 10

Program Number

Class

Max

Min

SEW Proceedings 104 SEL-94-006

Software Engineering Institute

Time Estimating Accuracy- %

E rro r

400 !_i

200! _ _'_ /

-100 ±

1 2 3 4 5 6 7 8 9 10

Program Number

Class

Max

Min

Software Engineering Institute

Productivity Range

100

80

60 _._

o 40_
-- 30 . ._-_

2O_o11-_//' -

Program Number

Max

Min

Avg

SEW Proceedings 105 SEL-94-006

Software Engineering Instltule

Defects Found in Test-Range

180

160

140

_ 120
.-1

loo
i.O

13 80

"_ 60

40

20

0

! "/

k/

I I _ -'#--- t i i I I

Program Number

Max

Min

Avg

m

_ _ U_My

=-- Sol f.nilwt_rtnli llll

Size prediction model (dmr data)

_T

°i

I

l

'00t

0 100

Size _P_on mo¢_

\ i j

I I i I ---t-- I #i----------4

200 300 400 500 _ 700 800

ACllial LOC

SEW Proceedings 106 SEL-94-006

m
m

Cost of error (dmr data)

_J

6O

4O

20

0-

Software Englnemring InsUlute

Defects analysis (dmr data)

Syntax errors

35 E_p¢e_s_on _ormat

SEW Proceedings 107 SEL-94-006

w soemm e_m._ anal.re

Reuse trends (dmr data)

!

=J

20%-

I 2 3 ,4 5 6 7

Sommm Engineering mmme

Ada PSP: Some experience artifacts

"1hear and I forget. I see and I remember, I do
and I understand "1

A lot of very useful process data:
• predicted and actual time per phase
• error classes and distribution
• linear regression models for size and cost estimates
• trend analysis graphs on all of the above
• post mortems and reports as experience base
• a deeper understanding of PSI that carries beyond

software development

A lot of new goals and ideas to try next

SEW Proceedings 108 SEL-94-006

w

Cameg,e Mellon l.)nr,,ersr_

Software Engineering Institute

Some of my next goals:

Reduce my total defect injection rate to less than 20 per
KLOC.

Optimize my set of inspection processes to reduce their
cost to less than 1 inspection staff-ran per SLOC while

keeping yield above 80%

Either build with reuse (at least 80% of total SLOC) or

build for reuse (at least 50% of the new code is reusable)

Revisit the PSP in the light of the CMM and ISO 9000-3

Recast the PSP in the experience factory mold

m

w

Cuneg,e _ Ue,,_m_

Software Engineering Institute

PSP: The experience workshop

Plan/Do Check/Act

Characterize I proiectJenvironme_Process Ana- I

project I charactenstJcs v_ lysis & design I

Review process
and tools _ (rExperience_ I

ectl]Base (PSP

[data base I I
Proj plans /& reports) J '

Formalize
Tailor
Generalize

J Projecttracking, i

I Execute process_ --._ modificationl /
| process I M°nit°ring I /

Do Post mortemj Data PIP revised_l I

estates
"_.___sons learned,components.

SEL-94-006
SEW Proceedings 109

So/tware Engineering Inst_ute

Conclusion

The PSP represents an elegant synthesis of proven concepts
(CMM, experience factory) scaled down to the individual level.

Preliminary PSP results are encouraging. Team data is needed.

Until now:

"We have evolved from focusing on the project, e.g.
schedule and resource allocation concerns, to
focusing on the product, e.g. reliability and
maintenance concerns, to focusing on the process,
e.g. improving methods and process models "_

Future progress may well hinge on focusing on the People.

15 L From"SoftwzLrcDevc_opmcn= APuadl_mforthcF=mr¢" Vet:mR Basiii. Proc t3thlnl'lComputcrSoftwarc&ApphcauonsCotffOrla_oFL, Scp89

Carnegie Mellon Unwersdy

Software Engineering Institute

PSP Status

The PSP was developed by Watts Humphrey

Several industrial organizations are now introducing
PSP methods (DEC, HP, TI) with encouraging results

SEI is offering train the trainer courses

Several universities are teaching the PSP (CMU, U. of
Mass., Howard U., Embry-Riddle U., McGill, and others)

The textbook "A Discipline for Software Engineering"
and support diskette are available from Addison
Wesley.

SEW Proceedings
110 SEL-94-006

m

w Melton U_e_lly

Soltwam Engineering institute

Questions

For more information or off-line discussion contact:

Daniel Roy

20 Forest Rd

Bradford Woods PA 15015

(412) 934 0943

dmr@sei.cmu.edu

SEW Proceedings 11 1 SEL-94-O06

SEW Proceedings 112 SEL-94-006

Session 3: Certification
/'J / /

Applying Program Comprehension Techniques to Improve

Software Inspections
Stan Rifkin, Master Systems Inc.

An Experiment to Assess the Cost-Benefits of Code Inspections in Large-Scale

Software Development

Harvey Siy, University of Maryland

A Process Improvement Model for Software Verification and Validation
Jack Callahan, NASA Independent Software Verification and Validation Facility

PRECgD!,_'._G P_,_E t3LAf,_ NOT FlC_'_ED

SEW Proceedings 113
SEL-94-006

SEW Proceedings 114 SEL-94-006

N95- 31241

Applying Program Comprehension Techniques to
Improve Software Inspections

Stan Rifkin
Master Systems Inc.

P.O. Box 8208
McLean, VA 22106
sr@seas.gwu.edu

Lionel Deimel
1408 Navahoe Dr.

Pittsburgh, PA 15228
bmtm05a@prodigy.com

Abstract: Software inspections are widely regarded as a cost-effective mechanism
for removing defects in software, though performing them does not always
reduce the number of customer-discovered defects. We present a case study in
which an attempt was made to reduce such defects through inspection training
that introduced program comprehension ideas. The training was designed to
address the problem of understanding the artifact being reviewed, as well as
other perceived deficiencies of the inspection process itself. Measures, both for-

mal and informal, suggest that explicit training in program understanding may
improve inspection effectiveness.

The software technical review is a widely -recommended mechanism for software defect removal.
Such reviews go by many names--inspections, Fagan-style inspections, code reviews, peer
reviews, formal reviews--and exhibit significant variations among organizations [Fagan, Freed-
man, Gilb]. All such review methods rely on the self-evident notion that software professionals

are likely to find defects in software if they actually look at the products they produce. A software
technical review is a meeting--along with its preparation--in which a group of software profes-
sionals (peers) does exactly that. Types of reviews are distinguished from one another by the

rules governing how that examination takes place and how it relates to the overall software
development or maintenance process. Impressive claims are made for the efficacy of reviews
[Humphrey].

What follows is a case study in which developers were given, along with traditional (and non-
traditional) instruction, explicit instruction in program comprehension concepts and techniques.
The case study suggests that software engineers often have poor strategies for understanding the
artifacts they are called upon to review and that providing training in comprehension skills can
improve their performance significantly.

A Training Opportunity

One of the authors (Rifkin) was engaged by a manufacturing firm that we will call Widget, Inc. 1
Widget management, having read the literature on software inspections, had expected the intro-
duction of this practice to produce a significant decline in customer-discovered defects. The
anticipated decline had not occurred, however, either in the number or percentage of defects
identified by customers.

1 The firm wishes to remain anonymous and does not want to divulge raw data on defects, which it
considers proprietary. The data in this paper are presented in a manner intended to respect those wishes.

SEW Proceedings 115
SEL-94-006

Previous engagements had investigated the common experience that, while the percentage of
defects discovered by testing prior to product release declines precipitously after the introduction
of inspections, customer-discovered defects show no significant decrease. This is not to say that
inspections are not useful or cost-effective. In large measure, however, they seem to identify
defects that might otherwise be found using a more expensive method--testing--rather than
reduce the overall number of defects in released software.

We had hypothesized that introducing inspections often had had little effect on reducing cus-
tomer-identified defects because, although reviewers were being thoroughly trained in the group
aspects of the inspection process, they were being given little guidance as to how to precisely
carry out their preparatory study of work products in the privacy of their own offices. It was
generally assumed that reviewers knew how to look for defects, any data to the contrary notwith-
standing. This hypothesis had led to the development of a training program on those previous
engagements that was intended to be more comprehensive, and this enhanced training was
brought to Widget. It incorporated an introduction to program comprehension based on the
Deimel and Naveda report from the Software Engineering Institute, "Reading Computer Pro-
grams: Instructor's Guide and Exercises" [Deimel90].

Wldget, Inc.

Widget is a large-scale manufacturing company. One particular section produces software for
engineering computations. There used to be two groups in this section, which we will call Group
2 and Group 3. Each group comprised about 30-35 software professionals who regularly per-
formed inspections. Group 2 had been trained in performing inspections by Michael Fagan
[Fagan], and Group 3 had received training from Tom Gilb [Gilb]. Group 2 had received training
about five years prior to our engagement, and Group 3 had received training about three years
prior. The two groups had developed a number of large FORTRAN programs, and their current
duties predominantly involved maintaining and enhancing those programs. Another unit, which
we will call Group 1, was about 18 months old. It, too, comprised 30-35 professionals, nearly all
of whom had worked previously in one of the two other groups. Group 1 maintained and en-
hanced a suite of computer-aided design and computer-aided manufacturing programs written

in FORTRAN, C, and several script languages. The source code of some of the programs had
been purchased. Staff turnover in all three groups was low.

The customers (users) of the software for which the section was responsible were Widget engi-
neers. Although these engineers were organized into a number of separate units, they constituted
a substantially homogeneous customer base for all three development groups. Each major
customer unit has one or two representatives responsible for collecting issues (including bugs
and desired features) and negotiating their resolution with the developers.

Some Group 1 members had received inspections training from Fagan and some from Gilb. This
difference in backgrounds and the perceived incompatibility of the Fagan and Gflb methods had
inhibited their use of inspections. Group I management sought to routinize inspections through
training that fostered a common understanding of inspections. After some discussion with that
management, however, reduction of customer-discovered defects became the dominant goal of
the proposed engagement It was necessary to define a single inspection process for Group 1, of
course; moreover the members of Group I were already "sold" on inspections and did not need
specific encouragement to perform them.

The Tralning Workshop

The normal Master Systems 1_2 day inspections training workshop was presented at Widget for

the members of Group 1, with half the group attending each of two offerings. The workshop fol-
lowed this syllabus:

SEW Proceedings 116 SEL-94-006

Day _ (full -day)

• DEFINITION OF INSPECTIONS, EXPECTED BENEFITS: Description of the "common"
software inspection process and its documented benefits.

• INTRODUCTION TO THE INSPECTION PROCESS: Details of the usual steps before,
during, and after an inspection defect collection meeting.

• INTRODUCTION TO READING COMPREHENSION: Discussion of how we come to

understand what we read and how that process can be made more effective.

• DEVELOPMENT OF THE INSPECTION PROCESS: What are the requirements for inspec-

tions? What is a process that will fulfill those requirements? Two types of work

products are chosen to be inspected.

In Between (outside work done by participants)

• CONTINUED DEVELOPMENT OF THE INSPECTION PROCESS: Participants, having

each been assigned to one of three groups, meet either to complete a full description of

the inspection process or to develop checklists for each of the two work product types.

• SELECTION AND STUDY OF ARTIFACTS: The groups responsible for composing

checklists select exisi_g artifacts for practice inspections. Each workshop participant
reviews one of these privately, in preparation for the inspections on Day 2.

Day 2 (half day)

• PRACTICE INSPECTIONS: Inspections of the selected artifacts allow participants to

practice taking the four r61es of producer, moderator, recorder, and reviewer using the
selected artifact.

• DEBRIEF: Discussion of what has been learned and how it can be applied on the job.

Days 1 and 2 were a week apart. Approximately two hours of the instruction time on Day 1 were

devoted to understanding programs. This material was to be applied during the In Between

time, when the artifacts selected were studied privately by each participant for approximately
two hours.

Much of the material on program comprehension was taken from or suggested by the report by

Deimel and Naveda. (The report makes a case for the importance of teaching program reading

skills, reviews the relevant literature, discusses how program reading can be taught, and iUus-

trates teaching suggestions using a substantial Ada program. It contains an extensive, annotated

bibliography.) The workshop introduced a simple model of program comprehension, discussed

comprehension goals for reading, and gave participants both general and specific strategies for

understanding programs. Instead of using Deimel's and Naveda's case study, actual artifacts

from Widget were used to illustrate comprehension issues, concerns, and principles.

An example of the material in the comprehension unit is a brief discussion of how we come to

understand what we read. We assume there exists an independent reality, the real world. We are

interested in a small portion of that reality that is our particular application area. We think of the

appl/cathm as an abstraction of the real world. Our job as systems developers is to translate the

features of that abstraction into the computer domain. There are thus two translations to be dealt

with, the first from the real world into application terms, and the second from the application

domain into computer terms. We come to understand these different domains (real world, appli-

cation, and computer) by constructing models of them, and then we test those models by having

a dialogue [Sch6n] with them in light of what we seek to accomplish (that is, compute). Reading

and understanding a program is a complex process of translating, interpreting, and hypothesis

testing among these (and possibly intermediate) domains.

SEW Proceedings 117 SEL-94-006

In addition to the introduction of program comprehension material, there are three aspects of our

form of inspection instruction that are distinctive that differ from "traditional" instruction, and

may therefore have had some influence on the effectiveness of instruction and the conduct of

inspections. First, we develop the process of inspection during the course, from the requirements

and design elicited there. We do not arrive with a prepared process.

Second, the participants develop their own checklists based on ones available in the public

domain that we supply. The partidpants usually develop two sets of checklists, one for each type

of artifact they decide is most important for them to inspect. Code and requirements are the typi-

cal choices. Again, we do not arrive with the final, "best" checklists.

Third, the workshop partidpants select the artifacts to be inspected, one artifact of each type. Our
advice is to select the oldest, most reliable artifacts that can be found. That way, finding defects

using the new inspections process impresses even the most skeptical participants.

Results

Because the training of Group I grew, in part, out of dissatisfaction with the number of defects

still found by customers, it was natural to examine customer defect reports for evidence of im-

provement. This was easily done, as written defect reports were received daily and were handled

in the same, standard manner for all three groups. Reported defects were classified as "critical,"
"serious," or "other." Critical defects were those that either crashed the system or prevented the

application from proceeding. Serious defects resulted in the production of wrong answers. All
less severe defects were classified as "other. "2

Of course, the software engineers trained in our two workshops took some time to begin apply-

ing the material presented. Moreover, only after inspected materials were released and in the

field for a time did they begin to generate customer defect reports. From a detailed analysis of

defect reports, it was determined that reports applying to software released by Group I made the

transition from being predominately about l_-workshop modules to referring to op_9__-

workshop-inspected modules approximately eight weeks after the training was completed. After

this time, post-workshop-inspected modules continued to predominate in the defect report

stream for Group 1. About 40 days after this time, defect reports were nearly exclusively about

software inspected after the training.

The transition between defect reports of pre- and post-workshop work products was short

because most customer-discovered defects relate to fixes or enhancements requested by the cus-

tomers themselves. Newly delivered code is checked immediately upon delivery by the cus-

tomers or their representatives, who want to make sure it works correctly.

In order to establish a baseline to characterize error reports before our training workshops could

exert any influence on behavior, we examined defect reports before and after the last workshop,

counting critical and serious defects only. According to our analysis, there was no change in the
pattern of Group 1 defects until about 10 working days 3 after the perceived inspection process

2 Each of the groups also classified the type of error, though each used a different scheme. Groups 2 and 3

created their own, different defect categories, and Group 1 was trained in orthogonal defect classification
[Chillarege]. The incompatibility of these defect taxonomies precluded drawing meaningful inferences about
the differences in the types of defects detected.

3 The data presented cover regular work days and exclude weekends and holidays, on which customer

representatives do not normally work. Note that the modules most heavily used at any given time depend
on the point in the product-development life cycle at which customers are working We did not try to
account for effects that might have been attributable to changing usage patterns, in part because, across the

SEW Proceedings 118 SEL-94-006

changeover point referred to above. Groups 2 and 3 showed essentially steady-state behavior

during this entire period, as one would expect. We therefore used the 10 days before the pattern

of reported Group I defects began to change as our baseline period. Reports of critical and seri-

ous defects for which each of the three groups was responsible were counted during this period,

and the average number of defects per day for each group was computed. Rather than present-

ing numbers of defects, we have expressed the data values as a percentage of the baseline average

for each group. This seemed a fair way to measure pre-workshop (baseline) performance because
(1) the groups were performing comparable tasks, (2) the groups had similar customer-identified

defect rates, and (3) all groups inspected some of their work products, but not all.

300%

250%

,_ 2oo%

o

150%

15

_1 100%

50%

0%

Fig. 1. Number of poat nelease cxitical and serious defect reports of Groups

1-0 by day, expressed as percentage of baseline average.

1 11 21 31 41 51 61 71 81 91 101

Wock day nm=d_r

The actual number of critical and serious defect reports received daily for each of the three

groups was plotted for 110 days, beginning on the first day of the 10-day baseline period. These

data are shown in Figure 1. We could have gone back much further than 10 days, but there
would have been no change in the patterns seen. Plots by defect type (critical, serious, other)
reveal the same pattern as the plots shown.

As might be expected, the data for Groups 2 and 3 vary around 100%, roughly between 0 and 2.5

times the average number of reports in the baseline period per day. The Group 1 data, on the
other hand, are disKnctive, after the first 10 days.

The customer-reported defects come directly from reports submitted by customers. Figure 1

shows the (normalized to 100%) number of defects recorded on such reports each day. Although

the data do include multiple reports of the same defects, there are, in fact, few such duplications.

The users are closely-knit and generally decide together to submit defect reports. Group 3 dis-
puted the validity of several reports (that is, its members believed that no defect was indicated),

and these are not represented; on days on which all of the Group 3 defects were disputed there is

three groups, there is considerable parallelism among the dozen or so products undergoing user
development.

SEW Proceedings 11 9 SEL-94-006

a zero count. 4 Group 1, on the other hand, decided, as a matter of policy, that any customer-

reported defect/s a defect,/pso facto.

It would have been useful to have been able to collect and compare defect densities, error injec-

tion rates, productivity, and other statistical measures of cross-group differences and similarities.
No such measures were available, at least in part because none of the groups use an automated

configuration management system, which could track easily the actual changes in code. Also, the

lack of software configuration management made it impractical for us to ascertain the rate of

errors introduced while trying to fix bugs, which can be quite large. We observe, though, that

Groups 2 and 3 have been in existence longer than Group I and therefore may be more "mature"
in some sense.

Analysis

Figure I suggests dramatic improvement in the post-workshop performance of Group 1. During
the first 10 days, all three groups display the same up-and-down behavior of the number of

defects attributable to their work. (There is no reason to expect that the number of reports should

be constant from day-to-day.) In terms of absolute numbers, Group I was in the middle of the

pack, as it had been for the previous 18 months. Then, after the products that Group 1 produced

and inspected using the workshop methods begin to be released, there is a clear decrease in the

number of post-release defects, those discovered by users. As can be seen from the scale of Fig-

ure 1, the rate drops to about 10% of the baseline average. In other words, there was a 90%

reduction in the number of post-release defects per day discovered by users.

300%

¢

250%

200%

150%

Fig. 2. Number of post release critcial and serious defect
reports by Group I ('ItLfkin'3by day, as e_d as

percentage of baseline.

50%

O%

1 11 21 31 41 51 61 71 81 91 101

Work day number

4 A zero count occurs when the development group does not agree that the user has found an error. In
other words, there were no errors found for that day, even though some may have been reported.

SEW Proceedings 120
SEL-94-006

60%

T
50_o ._ Fi8. 3. Number of post release czitcial and serious defect

B reports by Group I ("Rifkin") by day, beginning with Day 1I.

__ [[as expressed as percentage of baseline.
40% " ° " "

o%

11 21 31 41 51 61 71 81 91 101

Work day number

Figures 2-5 show individual curves for the three Groups. Figure 2 shows Group l's up-and-down
behavior during the first 10 days of this study, more characteristic of Groups 2 and 3. Then there

is a steady drop in the number of defects reported by users. Figure 3 illustrates this decrease
more clearly because of a vertical scale change resulting from showing only the data from the
eleventh day onward. Figure 4 shows Group 2"spost-release defect discovery history, and Figure
5, Group 3"s. Groups 2 and 3 serve as control groups here--they were doing nothing differ-
enfly---so there is no reason to expect their defect rates to show changes. Group 3 has a larger
variance than Group 2, and also has many more zero counts.

SEW Proceedings 121 SEL-94-006

3OO%

250%

200%

150%

100%

50%

0%

Fig. 4. Number of post release critical and serious defect

reports of Group 2 _'Fagan'5 by day, expressed as

percentage of baseline average.

11 21 31 41 51 61 71 81 91 101

Work day number

d:l

"d
I=

300%

250%

200%

150%

100%

50%

0%

1

Fig. 5. Number of post release critical and serious defect

reports for Croup 3 ("Cilb"), by day, expressed as percentage

of baseline average.

11 21 31 41 51 61 71 81 91 101

Work day number

SEW Proceedings 122 SEL-94-006

Using the data available, we investigated two questions:

1. How does the decrease in the number of defects discovered post-release by users relate to the
cost to repair those defects? In other words, do users discover the really difficult and expensive-
to-fix defects, or do inspections catch them? We used effort, that is, time, to indicate cost. Repair
data came directly from the defect reports. All groups report the time they spend repairing each
defect. Figure 6 shows our findings: there is a significant reduction in the per-defect cost to repair
user-discovered, post-release defects from Group 1, but not from Groups 2 and 3. We infer from
this that Group 1 is either identifying expensive-to-repair defects before release or learning to
program better in the first place. No special pattern is apparent in the data for Groups 2 and 3.

300%

i' 0"i ! o-t'o,

Fig. 6. Repair time of defec_ by day, expressed as percentage of

baseline. Fagan & Glib = 100%.

l I "--------Group 1 (Rifkin) i_ _

W_ day _

2. Does some other activity account for the difference in post-release defect discovery? We com-
pared over time the relative effectiveness of testing, inspections, and post-release discovery in
Figures 7-9. Times 1, 2, and 3 in these figures represent times just before inspection training, a
few months after training, and a year or two after training, respectively.

Fig. 7. Percentage of Group I CrR/fkln '') defects detected by mechanism over time.

100%

50%

0%

2

Thne period (see te_)

ITest

_ Inspections

B Post Release

SEW Proceedings 12 3 SEL-94-006

It is generally agreed that there are two ways to identify defects pre-release: reviews and testing.
As noted at the beginning of this paper, inspection is a form of software review. The literature on

the benefits of inspections commonly notes that the percentage of pre-release defects caught by
inspections (and without testing) evolves from 0% before implementing inspections, to 70-80%

after inspections are fully implemented; the remainder of pre-release defects being identified
through testing [Gilb]. That was also Widget's experience, as seen from the figures. The authors

are unaware of any literature about the impact of inspections specifically on post-release defects.

Fig. 8. Percentage of Group 2 ("Fagan") defects detected by mechanism over time.

100%

t#

=.

e_

50%

0%

1 2 3

Time period (see text)

• Test

I Inspections

[] Post Release

Figures 8 and 9 indicate that Groups 2 and 3 did not experience a decrease in the percentage of

defects discovered post-release by users, but, according to Figure 7, Group 1 did. In fact, accord-

ing to the figures, the decrease in Group l's post-release defect discovery was due, in large part,

to inspections.

Fig 9. Percentage of Group 3 ("Glib") defects detected by mechanism over time.

100%

v

e_

50%

0%

1 2 3

Time period (see text}

• Test

• Inspections

• Post Release

SEW Proceedings 124 SEL-94-006

Implications

Did Group 1 improve simply because we paid attention to it--the so-called Hawthorne effect?
We cannot say, but we have reason to doubt it. Like Groups 2 and 3, Group I knew it was being
trained. It did not know it was being studied, however, as all the data collection and analysis
were done after the fact from routine paperwork. Moreover, the Hawthorne effect presumably
wears off after a time, and we saw no such effect. Some authors even argue that there never was
a Hawthorne effect, that it was an artifact of the underlying Hawthorne site experiment and anal-
ysis [Jones].

The Widget experience suggests a number of inspections-related lessons or, at the very least,
some ideas to be further explored. To begin with, it suggests that we should not be complacent
about having discovered the ultimate form of group software review. Some writings, on inspec-

tions particularly, suggest fixed necessary and sufficient conditions required for effective reviews
[Fag-an]. Yet the nature of the defect classification used and the degree to which reviewers "own"
their own process---other distinctive features of the training given members of Group 1--may
play a significant r61e in making reviews useful. The primary lesson to be learned about inspec-
tions, however, is that, in the past, we may have paid too much attention to the global software
review process and too little attention to the conduct of an individual and perhaps weighty pro-
cess, namely the actual review of the software product.

What became obvious from the Widget experience was that individual software professionals
have widely differing, sometimes poorly conceived, comprehension strategies. We often heard
from workshop participants that, for the first time ever, they were able to say with some certainty
that they did or did not understand what they were reviewing.

Comprehension skills can be improved with training. (Ideally, comprehension skills should be
taught much earlier in their careers of software professionals [Deime185].) Better comprehension
skills among reviewers will likely facilitate development of a shared vision of what software
products should look like in order to be understood, a vision that should feed back into the soft-
ware process planning in a more effective way than merely following checklists. In fact, one
author (Rifkin) uses this realization by clients as a milestone to assure that they understand the

critical importance of comprehension: you cannot inspect what you cannot understand. Thus
arises a new entry criterion for inspections: inspectability---can I comprehend what you have
given me to review?

The apparent effectiveness of the inspection workshop is remarkable in light of the relatively
superficial treatment given to program comprehension ideas. We theorize, however, that the
material presented gave attendees a new way to think about programs and about what it means
to examine them. This re-orientation may have been sufficiently powerful in its own right that
the lack of supporting details was not a serious impediment to the development of improved
program comprehension skills. Along with the introduction to program comprehension, we
make the point repeatedly during training that this is just the beginning of a lifelong process of
learning of how to understand what you read. The extensive bibliography of Deimel and
Naveda suggests as much.

This study points to the importance of comprehension research in stark financial terms, as the
comprehension training seems to have led to the identification of significant software defects not
caught using a more simple-minded approach to software inspection. This research should con-

tinue, and the effect of program comprehension training on the identification of software defects
should be examined in greater detail. It would be interesting, for example, to see the effect of
providing only comprehension training to a group already performing inspections. (What would
happen if Group 2 or 3 were given a 2-3 hour comprehension workshop?)

SEW Proceedings 12 5 SEL-94-006

If indeed comprehension training improves performance during inspections, another interesting
question is what material is most effective to present and what material can be used later to
insure continuously improving inspection results.

Acknowledgments

We are indebted to our colleagues for their comments and feedback: Bill Brykczynski, Marilyn
Bush, Bob Grady, Frank McGarry, K. David Neal, Ron Radice, and Ed Weller.

n

[Ch_arege]

[Deime185]

[Deimel90]

[Fagan]

[Freedman]

[Gab]

[Humphrey]

[Jones]

[SchOn]

R. Chillarege, R., et al., "Orthogonal Defect Classification-A Concept for In-
process Measurements," IEEE Trans. Soflw. Eng. 18, 11, (November 1992) 943-
956.

Deimel, L.E. "The Uses of Program Reading," ACM SIGCSE Bulletin 17, 2
(June1985)5-14.

Deimel, L. E., and J. F. Naveda. Reading Computer Programs: Instructor's Guide
and Exercises. Educational Materials CMU/SEI-90-EM-3, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, Pa., 1990. Available
electronically from the SEI via anonymous ftp from ftp.sei.cmu.edu as files em-
3.ps and em-3code.txt in/pub/education.

Fagan, M. E. "Design and Code Inspections to Reduce Errors in Program
Development." IBM Systems J. 15, 3 (1976), 182-211;. Also Fagan, M. E,.
"Advances in Software Inspections." IEEE Software SE-12, 7 (July 1986) 744-
751;. Also Strauss, S., and R. Ebenau. Software Inspection Process,. New York:
McGraw-Hill, 1994.

Freedman, D. P., and G. M. Weinberg. Handbook of Walkthroughs, Inspections,
and Technical Reviews, 3rd Ed. New York: Little, Brown, 1982.

Gilb, T. Principles of Software Engineering Management. Wokingham, England:
Addison-Wesley, 1988, Chapter 12;. Also Gilb, T., and Graham, D. Software
Inspection. Reading, Mass.: Addison-Wesley, 1993.

Humphrey, W.S. Managing the Software Process. Reading, Mass: Addison-
Wesley, 1989, Section 15.4,3ff.

Jones, S. R. G., "Was There a Hawthorne Effect?" American J. Sociology 98, 3
(November 1992) 451-468.

Sch6n, D. A., The Reflective Practitioner: How Professionals Think in Action. New
York: Basic Books, 1983.

SEW Proceedings 126 SEL-94-006

N95- 31242

An Experiment to Assess the Cost-Benefits of Code

Inspections in Large Scale Software Development:

A Preliminary Report

A. Porter*

H. Siy*

Computer Science Department
University of Maryland

College Park, Maryland 20742
aporter@cs.umd.edu

harvey@cs.umd.edu

C. A. Toman

L. G. Votta

Software Production Research Department
AT&T Bell Laboratories

Naperville, Illinois 60566

cat@intgpl.att.com
votta@research.att.com

September 6, 1994

Abstract

This experiment (currently in progress) is designed to measure costs and benefits of different code inspection
methods. It is being performed with a real development team writing software for a commercial product. The

dependent variables for each code unit's inspection are the elapsed time and the number of defects detected.

We manipulate the method of inspection by randomly assigning reviewers, varying the number of reviewers and

the number of teams, and when using more than one team, randomly assigning author repair and non-repair of

detected defects between code inspections.

After collecting and analyzing the first 17% of the data, we have discovered several interesting facts about

reviewers, about the defects recorded during reviewer preparation and during the inspection collection meeting,

and about the repairs that are eventually made. (1) Only 17% of the defects that reviewers record in their

preparations are true defects that are later repaired. (2) Defects recorded at the inspection meetings fall into

three categories: 18% false positives requiring no author repair, 57% soft maintenance where the author makes

changes only for readability or code standard enforcement, and 25% true defects requiring repair. (3) The median
elapsed calendar time for code inspections is 10 working days - 8 working days before the collection meeting

and 2 after. (4) In the collection meetings, 31% of the defects discovered by reviewers during preparation are

suppressed. (5) Finally, 33% of the true defects recorded are discovered at the collection meetings and not during

any reviewer's preparation.
The results to date suggest that inspections with two sessions (two different teams) of two reviewers per session

(2sX2p) are the most effective. These two-session inspections may be performed with author repair or with no
author repair between the two sessions. We are finding that the two-session-two-person-wkh-repair (2sX2pR)

inspections are the most expensive, taking 15 working days of calendar time from the time the code is ready for

review until author repair is complete, whereas two-session-two-person-with-no-repair (2sX2pN) inspections take

only 10 working days, but find about 10% fewer defects.

* This work is supported in part by the National Aeronautics and Space Administration under grant NSG-

51P3. Mr. Siy was also partly supported by ATgflT's Summer Employment Program.

SEW Proceedings 127 SEL-94-006

1 Introduction

For almost twenty years, software inspections have been promoted as a cost-effective way to improve software

quality. Their expense is often justified by observing that the longer a defect remains in a system, the more

expensive it is to repair, and therefore the future cost of fixing defects is greater than the present cost of finding

them.

However, this reasoning is naive because inspection costs are significantly higher than many people realize. In

practice, large projects perform hundreds of inspections, each requiring five or more participants. Holding such a

large number of meetings can cause delays which may significantly lengthen the development interval (calendar

time to completion)} Since long development intervals risk substantial economic penalties, the hidden cost of

the current inspection process must be considered.

We hypothesize that different inspection approaches involve different tradeoffs between minimum interval
and maximum effectiveness. But until now there have been no empirical studies to evaluate these tradeoffs.

We have conducted such a study, and our results indicate that the choice of approach significantly affects the

cost-effectiveness of the inspection.

Below, we review the relevant research literature, describe the various inspection approaches we examined,

and present our experimental design, analysis, and conclusions.

1.1 Literature Review

To eliminate defects, many organizations use an iterative, three-step inspection procedure: Preparation, Collec-

tion, Repair[11] . First, a team of reviewers reads the artifact, detecting as many defects as possible. Next, these

newly discovered defects are collected, usually at a team meeting. They are then sent to the artifact's author for

repair. Under some conditions the entire process may be repeated one or more times.

Many articles have been written about inspections. Most, however, are case studies describing their successful
use [s, 9, 20, 17, 24, 12, 1] Few, critically analyze inspections or rigorously evaluate alternative approaches. We
believe that additional critical studies are necessary because the cost-effectiveness of inspections may well depend

on such variables as team size. number of inspection sessions, and the ratio of individual contributions versus

group efforts.

Team Size: Inspections are usually carried out by a team of four to six reviewers. Buck[2] provides data (from

an uncontrolled experiment) that showed no difference in the effectiveness of three, four, and five-person teams.
However. no studies have measured the effect of team size on inspection interval.

Single-Session vs. Multiple-Session Inspections: Traditionally, inspections are carried out in a single
session. Additional sessions occur only if the original artifact or the inspection itself is believed to be seriously

flawed. But some authors have argued that multiple session inspections might be more effective.

Tsai et al.[is] developed the N-fold inspection process, in which N teams each carry out independent in-

spections of the entire artifact. The results of each inspection are collated by a single moderator, who removes

duplicate defect reports. N-fold inspections will find more defects than regular inspections as long as the teams

don't completely duplicate each other's work. However, they are far more expensive than a single team inspection.
Parnas and Weiss' active design reviews (ADR)[14] and Knight and Myers' phased inspections (PI)[13] are

also multipie-session inspection procedures. Each inspection is divided into several mini-inspections or "'phases".

ADR phases are independent, while PI phases are executed sequentially and all known defects are repaired after

each phase. Usually each phase is carried out by one or more reviewers concentrating on a single type of defect.
The authors believe that muhiple-session inspections will be much more effective than single-session inspec-

tions, but they do not show this empirically, nor do they consider any effects on inspection interval.

Group-centered vs. Individual-centered Inspections: It is widely believed that most defects are first

identified during the collection meeting as a result of group interaction [7] . Consequently, most research has

focused on streamlining the collection meeting by determining who should attend, what roles they should play,

how long the meeting should last, etc.

1 As developer's calendars fill up, it becomes increasingly dif_cult to schedule meetings. This pushes meeting dates farther and

farther into the future, increasing the development interval.

SEW Proceedings 128 SEL-94-006

On the other hand, several recent studies have concluded that most defects are actually found by individuals

prior to the collection meeting. Humphrey [10] claims that the percentage of defects first discovered at the

collection meeting ("meeting gain rate") averages about 25% In an industrial case study of 50 design inspections,

Votta [22] found far lower meeting gain rates (about 5%). Porter et. all 16] conducted a controlled experiment

in which graduate students in computer science inspected several requirements specifications. Their results show

meeting gain rates consistent with Votta's. They also show that these gains are offset by "meeting losses" (defects

first discovered during preparation but never reported at the collection meeting). Again, since this issue clearly

affects both the research and practice of inspections, concrete studies are needed.

1.2 Hypotheses

Inspection approaches are usually evaluated according to the number of defects they find. As a result, some

information is available about the effectiveness of different approaches, but very little about their costs. We

believe that cost is as important as effectiveness, and we hypothesize that different approaches have significantly

different tradeoffs between development interval and detection effectiveness. Specifically, we hypothesize that

• inspections with large teams have longer inspection intervals, but find no more defects than smaller teams;

• collection meetings do not significantly increase detection effectiveness;

• multiple-session inspections are more effective than single-session inspections, but significantly increase

inspection interval.

2 The Experiment

To evaluate these hypotheses we designed and are conducting a controlled experiment. Our purpose is to compare
the tradeoffs between minimum interval and maximum effectiveness of several inspection approaches.

2.1 Experimental Setting

We are currently running this experiment at AT&T on a project that is developing a compiler and environment

to support developers of the AT&:T's 5ESS ® telephone switching system. The finished system is expected to

contain 30K lines of C++ code, of which about 6K is reused.

All of the team's six members are experienced developers, and all have received training on inspections. The

project began coding during June, 1994, and will perform about I00 code inspections by the end of the year.

2.2 Operational Model

To test our hypotheses we must measure both the interval and the effectiveness of every inspection. We began

by constructing models for calculating inspection interval and estimating the number of defects in a code unit.

These models are depicted in Figure 1.

2.2.1 Modeling the Inspection Interval

The inspection process begins when a code unit is ready for inspection and ends when the author finishes repairing

the defects found in the code. The elapsed time between these events is called the inspection interval.

The length of this interval depends on the time spent working (preparing, attending collection meetings, and

repairing defects) and the time spent waiting (time during which the inspection does not progress due to process

dependencies, higher priority work, scheduling conflicts, etc).
In order to measure inspection interval and its various subintervals, we devised an inspection time model

based on visible inspection events [23] . Whenever one of these events occurs it is timestamped and the event's

participants are recorded. (In most cases this information is manually recorded on the forms described in Section

2.4.1.) These events occur, for example, when code is ready for inspection, or when a reviewer is finished with
his or her preparation. This information is entered into a database, and inspection intervals are reconstructed

by performing queries against the database.

SEW Proceedings 129 S EL-94-006

I

I

Figure 1: This figure depicts a simple model of the inspection process. The figure's lower panel summarizes the

inspection's time usage. Specifically, it shows the inspection's participants (an author and several reviewers), the

activities they perform (coding, preparation, collection, repair, and other), the interval devoted to each activity

(denoted by the shaded areas), and the total inspection interval (end of coding to completion of repair). It also

shows that in a large organization, inspections must compete with other processes for limited time and resources.

The upper portion of the figure shows when and to what extent inspections remove defects from the code.

2.2.2 Modeling the Defect Detection Ratio

One important measure of an inspection's effectiveness is its defect detection ratio - the number of defects found

during the inspection divided by the total number of defects in the code. Because we never know exactly how

many defects an artifact contains, it is impossible to make this measurement directly, and therefore we are forced

to approximate it.
We will use the following approaches to approximate the defect detection ratio.

• Observed detection ratio: We assume that total defect density is constant for all code units and that

we can compare the number of defects found per KNCSL. This is always available, bu_ very imprecise.

• Complete estimation of detection ratio: We track the code through testing and field deployment,

recording new defects as they are found. This is more precise, but is not available until well after the

project is completed.

2.3 Experimental Design

2.3.1 Variables

The experiment manipulates three independent variables:

1. the team size (one, two, or four members, in addition to the author),

2. the number of inspection sessions (one session or two sessions),

3. the coordination between passes (in two-session inspections the author may or may not repair known defects

between sessions).

The treatment distributions are shown in Table 1.

For each inspection we measured four dependent variables:

1. inspection intervals,

2. estimated defect detection ratio,

3. the percentage of defects first identified at the collection meeting (meeting gain rate),

4. the percentage of potential defects reported by an individual, but not recorded at the collection meeting

(meeting suppression rate).

We also capture repair statistics for every defect.

SEW Proceedings 130 SEL-94-006

Number of Sessions Totals

Team Size

1

4
Totals -g

With Repair
1

9
0

9

Without Repair
I l

0 ,_
1g

Table 1: This table gives the percentage of inspections allocated to each setting of the independent variables.

Note: Since we cannot apply capture-recapture estimates to the data from the one-session-one-person or two-

session-one-person-with-repair inspections, this data will be held out of the capture-recapture analysis.

2.3.2 Design

This experiment uses a 2"- x 3 partial factorial design to compare the interval and effectiveness of inspections with
different team sizes, number of inspection sessions, and coordination strategies. We chose a partial factorial design

because some treatment combinations were considered too expensive (e.g., two-session-four-person inspections

with and with no repair).

2.3.3 Threats to Internal Validity

Threats to internal validity are influences that can affect the dependent variable without the researcher's knowl-

edge. W'e considered three such influences: (1) selection effects, (2) maturation effects, and (3) instrumentation

effects.
Selection effects are due to natural variation in human performance. For example, if one-person inspections

are done only by highly experienced people, then their greater than average skill can be mistaken for a difference
in the effectiveness of the treatments. We limited this effect by randomly assigning team members for each

inspection. This way individual differences are spread across all treatments.
Maturation effects result from the participants' skills improving with experience. Again we randomly assigned

the treatment for each inspection to spread any performance improvements across all treatments.
Instrumentation effects are caused by code to be inspected, by differences in the data collection forms, or by

other experimental materials. In this study, one set of data collection forms was used for all treatments. Since

we could not control code quality or code size, we randomly assigned the treatment for each inspection.

2.3.4 Threats to External Validity

Threats to external validity are conditions that limit our ability to generalize the results of our experiment to in-

dustrial practice. We considered three sources of such threats: (1) experimental scale, (2) subject generalizability:

and (3) subject representativeness.
Experimental scale becomes a threat when the experimental setting or the materials are not representative

of industrial practice. We avoided this threat by conducting the experiment on a live software project.

A threat to subject generalizability may exist when the subject population is not drawn from the industrial

population. This is not a concern here because our subjects are software professionals.
Threats regarding subject representativeness arise when the subject population is not representative of the

industrial population. This may endanger our study because our subjects are members of a development team

and so are not a random sample of the entire development population.

2.3.5 Analysis Strategy

Once the data are collected we will analyze the combined effect of the independent variables on the dependent

variables to evaluate our principal hypothesis. Once the significant explanatory variables are discovered and their

magnitude estimated, we will examine subsets of the data to study our specific hypotheses.

SEW Proceedings 131 SEL-94-006

2.4 Experimental Instrumentation

We designed several instruments for this experiment: preparation and meeting forms, author repair forms, and

participant reference cards.

2.4.1 Data Collection Forms

We designed two data collection forms, one for preparation and another for the collection meeting.

The meeting form is filled in at the collection meeting. When completed, it gives the time during which the

meeting was held, and a page number, a line number, and an ID for each defect.
The preparation form is filled in during both preparation and collection. During preparation, the reviewer

records the times during which he or she reviewed, and the page and line number of each issue ("suspected"

defect). During the collection meeting the team will decide which of the reviewer's issues are, in fact, real defects.
At this time, real defects are recorded on the meeting form and given an ID. The reviewer then links this ID to

his or her preparation form.

2.4.2 Author Repair Forms

The author repair form captures information about each defect identified during the inspection. This information

includes Defect Disposition (no change required, repaired, deferred); Repair Effort (< lhr , <_ 4hr , _< 8hr, or

> 8hr), Repair Locality (whether the repair was isolated to the inspected code unit), Repair Responsibility

(whether the repair required other developers to change their code), Related Defect Flag (whether the repair

triggered the detection of new defects), and Defect Characteristics (whether the defect required any change in the

code, was changed to improve readability or to conform to coding standards, was changed to correct violations

of requirements or design, or was changed to improve efficiency).
This information is used to discard certain defect reports from the analysis - i.e., those regarding defects that

required no changes to fix them or concerned coding style rather than incorrect functionality.

2.4.3 Participant Reference Cards

Each participant received a set of reference cards containing a concise description of the experimental procedures

and the responsibilities of the authors and reviewers.

2.5 Conducting the Experiment

To support the experiment, Mr. Harvey Sly, a doctoral student working with Dr. Porter at the University of

Maryland, joined the development team in the role of inspection quality engineer (IQE). The IQE is responsible

for tracking the experiment's progress, capturing and validating data, and observing all inspections. The IQE
also attends the development team's meetings, but has no development responsibilities.

When a code unit is ready for inspection, its author sends an inspection request to the IQE. The IQE then

randomly assigns a treatment (based on the treatment distributions given in Table 1) and randomly draws a
review team from the reviewer pool." These names are then given to the author, who schedules the collection

meeting.
Once the meeting is scheduled, the IQE puts together the team's inspection packets. 3 The IQE attends the

collection meeting to ensure that all the procedures have been correctly followed. After the collection meeting
he gives the preparation forms to the author, who then repairs the defects, fills out the author repair form, and

returns all forms to the IQE. After the forms are returned, the IQE interviews the author to validate the data.

3 Data and Analysis

Four sets of data are important for this study: the team defect summaries, the individual defect summaries, the
interval summaries, and the author repair summaries. This information is captured on the preparation, meeting,

and repair forms.

2We do not allow any single reviewer to be assigned to both teams in a two-session inspection.

3The inspection packet contains the code to be inspected, all required data collection forms and instructions, and a notice giving

the time and location of the collection meeting.

SEW Proceedings 1 3 2 S EL-94-006

The team defect summary forms show all the defects discovered by each team. This form is filled out by the

author during the collection meeting and is used to assess the effectiveness of each treatment. It is also used to
measure the added benefits of a second inspection session by comparing the meeting reports from both halves of

two-session inspections with no repair.
The individual defect summary forms show whether or not a reviewer discovered a particular defect. This

form is filled out during preparation to record all suspected defects. The data is gathered from the preparation

form and is compiled during the collection meeting when reviewers cross-reference their suspected defects with

those that are recorded on the meeting form. This information, together with the team summaries, is used to

calculate the capture-recapture estimates and to measure the benefits of collection meetings.
The interval summaries describe the amount of calendar time that was needed to complete the inspection

process. This information is used to compare the average inspection interval and the distribution of subintervals
for each treatment.

The author repair summaries characterize all the defects and provide information about the effort required

to repair them.

As of this writing, only 17% of the planned inspections have been completed. Consequently, we do not yet

have enough data to definitively evaluate our hypotheses. However, we can look at the apparent trends in our

preliminary data, explore the implications of this data for our hypotheses, and discuss how the resolution of these

hypotheses at the completion of the experiment will help us answer several open research questions.

3.1 Data Reduction

Data reduction is the manipulation of data after its collection. We have reduced our data in order to (i) remove

data that is not pertinent to our study, and to (2) adjust for systematic measurement errors.

3.1.1 Reducing the Defect Data

The preparation and meeting forms capture the set of issues that were raised during each inspection. In practice,

many of these issues, even if they went unrepaired, would not lead to incorrect system behavior, and they are

therefore of no interest to our analysis.

Based on information in the repair form and interviews with each author, we classified tile issues into one of

three categories:

• False Positives (issues for which no changes were made),

• Soft Maintenance (issues for which changes were made only to improve readability or enforce coding stan-

dards),

• True Defects (issues for which changes were made to fix requirements or design violations, or to improve

system efficiency).

Although defect classifications are usually made during the collection meeting, we feel that authors understand
the issues better after they have attempted to repair them, and are then better able to make more reliable

classifications.
The distribution of defect classifications for each treatment appears in Figure 2. Across all inspections, 18%

of the issues are False Positives, 57% involve Soft Maintenance, and 25% are True Defects.
We consider only True Defects in our analysis of estimated defect detection ratio (a dependent variable)4

3.1.2 Reducing the Interval Data

The preparation, meeting, and repair forms show the dates on which important inspection events occur. This

data is used to construct the inspection intervals (usually considered to be the calendar period between the

submission of an inspection request and the completion of all repairs).
We made two reductions to this data.

First, we observed that some authors did not repair defects immediately following the collection meeting.

Instead, they preferred to concentrate on other development activities, and fix the defects later, during slow work

4We observed that most of the soft maintenance issues are caused by conflicts between the coding style or conventions used by

different reviewers. In and of themselves, these are not true defects. We feel these issues might be more efficiently handled outside

of the inspection process with automated tools or standards.

SEW Proceedings 133 S EL-94-006

t'r'_

z_

o .J'

lsX2.p lsX4p 2sXlpN 2sXlpR 2sX2pN 2sX2pP, AU

I _ False Positives

TREATMENI" I _ Soft Maintanance

, _ True Defects

Figure 2: Disposition of Issues Recorded at the Collection Meeting. For each treatment, the stacked
barchart shows the percentage of the issues recorded at collection meetings that turn out to be false positives,

soft maintenance, or true defects. Across all treatments, only 25% of the issues are true defects.

Team Size

1

2

4

Totals

Number of Sessions Totals

0

5

1

6

2

With Repair Without Repair
3 2

2 4

0 0

5 6

5

11

1

17

Table 2: This table shows the number of observations we currently have for each treatment.

periods. To remove these cases from the analysis, we redefined the inspection interval to be the calendar period

between the submission of an inspection request and the completion of the collection meeting.
When these reductions are made, two-session inspections have two inspection subintervals - one for each

session. We equate the interval for such inspections with the longer of these two subintervals, since both of them

begin at the same time.
Next, we removed all nonworking days from the interval. Nonworking days are defined as (1) weekend days

during which no inspection activities occur, or (2) days during which the author is on vacation and no reviewer

performs any inspection activities.
We use the length of these reduced intervals in our analysis of the inspection interval.

Figure 3 is a boxplot s showing the number of working days from the issuance of the inspection request to the

collection meeting, from the collection meeting to the completion of repair, and the total. The total inspection
interval has a median of 10 working days, 8 before and 2 after the collection meeting.

3.2 Overview of Data

Table 2 shows the number of observations to date for each treatment. Figure 4 is a contrast plot showing the

interval and effectiveness of all inspections and for every setting of each independent variable. This information is

SLn this paper we have made extensive use of boxplots to represent prominent features of a distribution. Each set of data is

represented by a box, the height of which corresponds to the spread of the central 50_ of the data, with the upper and lower ends

of the box marking the upper and lower quartiles. The data median is denoted by a bold point within the box. The lengths of the

vertical dashed lines relative to the box indicate how stretched the tails of the distribution are; they extend to the standard range of

the data, defined as 1.5 times the inter-quartile range. The detached points are "outliers" lying beyond this range.[4]

SEW Proceedings 134 SEL-94-006

t_

c ¢q

O

Z

tv

¢-_

t_

O

t
L o

0

; r ,
i i

' I •] 'a. 1.

Meeting Repair Total

INTERVAL

Figure 3: Premeeting Inspection Interval. These boxplots show all the interval data divided into two parts:

time before the meeting and time after the meeting. The total inspection time has a median of 10 days, 80% of

which is before the meeting.

used to determine the amount of the variation in the dependent variables that is explained by each independent

variable. We also show another variable, total number of reviewers (the number of reviewers per session multiplied

by the number of sessions). This variable provides information about the relative influence of team size vs. number

of sessions.

3.3 Analysis of Interval Data

Inspection interval is an important measure of cost. Figure 5 shows the inspection interval (premeeting only) by
treatment and for all treatments.

We draw several observations from this data. First, the interval of two-session-one-person inspections is no

longer than the interval of one-session-two-person inspections. Second, 2sX2pN inspections also have no longer

interval than lsX2p inspections.
The cost of serializing two inspection sessions is suggested by comparing 2sX2pN inspections with 2sX2pR

inspections. The 2sX2pR inspections have a 53% longer interval than the 2sX2pN inspections. This indicates

that any multiple session inspections that require repair after each session will significantly increase the inspection

interval.

The additional cost of multiple inspection sessions can be seen by comparing lsX2p inspections with 2sX2pN

inspections. The 2sX2pN interval is only slightly longer than the lsX2p interval. However, since the author must
be involved in each session, the interval is likely to grow as the number of sessions increases.

3.4 Analysis of Effectiveness Data

The benefit of inspections is that they find defects. This benefit will vary with the different inspection treatments.

Figure 6 shows the observed defect density for all inspections and for each treatment separately.

Several interesting trends appear in the preliminary data. First, lsX2p inspections are as effective as lsX4p

inspections. Second, 2sX2p inspections appear to be more effective than any one-session inspection, but 2sXlp
inspections are not more effective than lsX2p inspections. Finally, 2sX2pR inspections are more effective than

2sX2pN inspections.
The effectiveness of different team sizes is suggested by comparing lsX2p, lsX4p, and 2sxlpN inspections.

The low effectiveness of lsX4p inspections may indicate that current inspection teams are too large; however,

with only a single lsX4p inspection drawing any conclusions would be premature.

SEW Proceedings 13 5 S EL-94-006

80- 20-

03
O
Z

co
m

v

>-
F-
03
z
uJ
£3
I-
O
UJ
U_
UJ
£3

60-

40-

20.

0

All

4L

" No R_pair

>, 15

¢-
.D

O

10-
J
<
:>
n'-
LU
_" 5
Z

0

All)ata Rel_air Team)ata Rel_air Team
Sessions Reviewers Sessions Reviewers

FACTORS FACTORS

Figure 4: Effectiveness and Interval by Independent Variables. The dashes in the far left column of the

first plot show the defect detection rates for all inspections. The dotted horizontal line marks the average defect
detection rate. The other four columns indicate factors that may influence this dependent variable. The plot

demonstrates the ability of each factor to explain variations in the dependent variable. For the Sessions factor,
the vertical locations of the symbols "1" and "2" are determined by averaging the defect detection rates for all

code inspection units having 1 or 2 sessions. The right plot shows similar information for inspection interval.

The additional effectiveness of multiple sessions is suggested by comparing lsX4p and 2sX2p and 2sXlp

inspections. This data indicates that it is more effective to use two teams of two persons each than to use a

single team of four persons. However, it appears that two teams of one person are not more effective than a

single team of two persons. Many multiple session methods rely on the assumption that several one person teams
can be more effective than a single large team. However, our results suggest that the performance of individual

reviewers must be increased if multiple session methods are to be effective.
The additional effectiveness due to serializing multiple sessions is suggested by comparing 2sX2pR against

2sX2pN inspections. While the data shows that 2sX2pR inspections are the more effective, the difference in
effectiveness between 2sX2pR and 2sX2pN inspections is small, about 2 defects per 300 NCSL.

3.5 Meeting Effects

During prepreparation, reviewers analyze the code units to discover defects. After all reviewers are finished

preparing, a collection meeting is held. These meetings are believed to serve at least two important functions:

(1) suppressing unimportant or incorrect defect reports, and (2) finding new defects. These meetings have a

significant effect on inspection performance.

Analysis of PreI aration Reports. One input to the collection meeting is the list of defects found by each

reviewer during his or her preparation. Figure 7 shows the percentage of defects reported by each reviewer that

are eventually determined to be true defects. Across all inspections, only 25% of all reports turn out to true

defects. This figure appears to be independent of inspection treatment.

SEW Proceedings 136 SEL-94-006

o

o

_.J
<

cr

p_o

¢3
Z
l.-
IJJ
LU

I.,U
n-
O,.

4

I i
I i

lsX2p lsX4p 2sXlpN 2sXlpR 2sX2pN 2sX2pR All

TREATMENT

Figure 5: Premeeting Interval by Treatment. This plot shows the observed interval for each inspection
treatment.

U2

or-

CO

©

oo

..3
CO

oz

b--

IlL.
W

i

-1

i
4

i

i

r--Ti --_

I
I
I
I
I
I

--]

lsX2p lsX4p 2sXlpN 2sXlpR 2sX2pN 2sX2pA All

TREATMENT

Figure 6: Observed Defect Density by Treatment. This plot shows the observed defect density for each
inspection treatment. Across all inspections, 32 defects were found per KNCSL.

Analysis of Suppression. It is generally assumed that collection meetings suppress unimportant or incorrect
defect reports, and that without these meetings, authors would have to process many spurious reports during

repair.
Figure 8 shows the suppression rates for all inspections. One trend in the preliminary data is that four-person

inspections consistently suppress more reports than any other treatment. (One-session-two-person inspections
show considerable variability.)

Analysis of Meeting Gains Another function of the collection meeting is to find new defects in addition to
those discovered by the individual reviewers. Defects that are are first discovered at the collection meeting are

SEW Proceedings 13 7 8EL-94-006

rr-
t.u

uJ

UJ
{2:

er
L_
O-

LU

b--
CO
UJ
LA.
LId

UJ

in-
F-

i

r--T--_

I
I
[
I
I
I

I
I

_ _T_ _

I
i

lsX2p lsX4p 2sXlpN 2$XlpR 2sX2pN 2sX2pR

TREATMENT

-T--
I
=

I
I
I

I

All

Figure 7: True Defect Bate per Reviewer Prepartion Report by Treatment. This boxp|ot shows the
rate at which defects found during preparation are eventually considered to be true defects. Across all treatments,

only 17% of the reports turn out to be true defects.

LU

LId

re

n

LU

er"

¢,0
O3
klJ
rt-
{1.

t_

<5
-T--

I

tD I

',

,,

4 7

,
lsX2p

-T- _--T--_ _--T--_

-T- _-T-_

..... _ ° i ' '

.-r-J

lsX4p 2sXlpN 2sXlpR 2sX2pN 2sX2pR All

TREATMENT

Figure 8: Meeting Suppresion Bate by Treatment. These boxplots show the suppression rate for each
reviewer by treatment. The suppression rate for a reviewer is defined as the number of defects detected during

preparation but not included in the collection meeting defect report, divided by the total number of defects

recorded by the reviewer in his/her preparation. Across all inspections, 31% of the preparation reports are

suppressed.

called meeting gains.
Figure 9 shows the meeting gain rates for all inspections. Across all inspections, 33% of all defects discovered

are meeting gains. The data suggests that lsX4p inspections have the lowest gain rates.
The effect of team size is suggested by comparing lsX4p inspections to all others. Although most of the

treatments show similar gain rates, one-session-four-person inspections appear to be the lowest. This may indicate

SEW Proceedings 138
SEL-94-006

LU
F-

Z

<
¢5

O

Z

F-
UJ
LD

O

t
i
I
I

I

i

L_
i
L

r--Tl_ r--T--_
I I
I I
I I
I I
I I

' I
I
I

L

r-Tm_
I

lsX2p lsX4p 2sXlpN 2sXlpR _X2pN 2sX2pR All

TREATMENT

Figure 9: Meeting Gain Rate by Treatment. These boxplots shows the meeting gain rates for all inspections
and for each treatment. The median rate was 33%.

that larger team size can be detrimental to effectiveness.
The data indicate that almost half of the defects reported during preparation turn out to be false posi-

tives. This suggests that much of the preparation effort is unproductive and that the development of improved

preparation techniques may significantly increase overall effectiveness.
Our observed gain rates are much higher than those reported by Votta[22] . Explanations include three possible

causes:

• Votta's study was concerned with design documents rather than code;

• the average team size for a design review is larger than for code inspections;

• design reviewers may prepare much more thoroughly since design defects have wider impact than code
defects.

4 Conclusions and Future Work

We are in the midst of a long term software inspection experiment based on all of the code units in a real 5ESS
software development product. We are assessing several inspections methods by randomly assigning different

team sizes, combinations of reviewers, numbers of inspection sessions, and author repair activities to each code

unit. To date we have completed 17 of the planned i00 inspections. We expect to finish the remaining 83

inspections by the end of 1994.
Preliminary results of our empirical study of the effectiveness of various software inspection methods challenge

certain long-held beliefs about the most efficient way to conduct inspections.

Judging from the percentage of defects discovered, we are finding that two-session-two-person (2sX2p) in-

spections appear to be the most effective. The difference in effectiveness between 2sX2p inspections and other
treatments also show that number of sessions and number of reviewers per session are important factors affecting

efficiency.
Two-session-two-person-with-repair (2sX2pl%) inspections seem to be slightly more effective than two-session-

two-person-with-no-repair (2sX2pN) inspections. However, repairing defects between sessions costs 5 extra work-

ing days of inspection interval.
We believe that when all the inspection data has been collected and analyzed, the answers to the following

questions about software inspections will emerge:

SEW Proceedings 139 SEL-94-006

1. Are some inspection methods significantly more effective than others?

2. What is the most efficient number of reviewers per inspection?

3. How many review sessions per inspection will give the best results?

4. Are multiple session inspections more cost beneficial than single session inspections?

5. Should author repair be done between review sessions?

Finally, we feel it is important that others attempt to replicate our work, and we are preparing materials to

facilitate this. Although we have rigorously defined our experiment and tried to remove the external threats to

validity, it is only through replication that we can be sure all of them have been addressed.

Acknowledgments

We would like to recognize the efforts of the experimental participants - an excellent job is being done by all. Our

special thanks to Nancy Staudenmayer for her many helpful comments on the experimental design. Our thanks
to Dave Weiss and Mary Zajac who did much to ensure we had all the necessary resources and to Clive Loader
and Scott VanderWiel for their valuable technical comments. Finally, Art Caso's editing is greatly appreciated.

SEW Proceedings 140 S EL-94-006

References

[1] Barry Boehm. Verifying and validating software requirements and design specifications. IEEE Software,

1(1):75-88, January 1984.

[2] F. O. Buck. Indicators of quality inspections. Technical Report 21.802, IBM Systems Products Division,

Kingston, NY, September 1981.

[3] K P Burnham and W S Overton. Estimation of the size of a closed population when capture probabilities

vary among animals. Biometrika, 65:625-633, 1978.

[4] John M. Chambers, William S. Cleveland, Beat Kieiner, and Paul A. _ukey. Graphical Me¢hods for Data
Analysis. Wadsworth International Group, Belmont, California, 1983.

[5] Stephen G. Eick, Clive R. Loader, M. David Long, Scott A. Vander Wiel, and Lawrence G. Votta. Estimat-

ing software fault content before coding. In Proceedings of the l_th International Conference on Software

Engineering, pages 59-65, May 1992.

[6] Stephen G Eick, Clive R Loader, M. David Long, Scott A Vander Wiel, and Lawrence G Votta. Capture-

recapture and other statistical methods for software inspection data. In Computing Science and Statistics."

Proceedings of the 25th Symposium on the Interface, San Diego, California, March 1993. Interface Foundation
of North America.

[7] M. E. Fagan. Design and code inspections to reduce errors in program development. IBM Systems Journal,

15(3):216-245, 1976.

[8] P. J. Fowler. In-process inspections of work products at at&t. AT_T Technical Journal, March-April 1986.

[9] D. P. Freeman and G. M. Weinberg. Handbook of Walkthroughs, Inspections and Technical Reviews. Little,

Brown, Boston, MA, 1982.

[10] Watts Humphrey. Managing the Software Process. Addison-Wesley, New York, 1989.

[11] IEEE Standard for software reviews and audits. Soft. Eng. Tech. Comm. of the IEEE Computer Society,
1989. IEEE Std 1028-1988.

[!2] John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An analysis of defect densities found during software
inspecitons. In SEL Workshop Number 15, Goddard Space Flight Center, Greenbelt, MD, nov 1990.

[i$] John C. Knight and E..-knn .Myers. An improved inspection technique. Commun'ca_ion_ o_ th_ .4CM,

36(11):51-61, November 1993.

[14] Dave L. Parnas and David M. Weiss. Active design reviews: principles and practices. In Proceedings of the
8th International Conference on Software Engineering, pages 215-222, Aug. 1985.

[15] Kenneth H. Pollock. Modeling capture, recapture, and removal statistics for estimation of demographic
parameters for fish and wildlife populations: Past, present, and future. Journal of the American Statistical

Association, 86(413):225-238, March 1991.

[16] Adam A. Porter and Lawrence G. Votta. An experiment to assess different defect detection methods for
software requirements inspections. In Sizteen_h International Conference on Software Engineering, Sorrento,

Italy, May 1994.

[17] Glen W. Russel. Experience with inspections in ultralarge-scale developments. IEEE Software, 8(1):25-31,

January 1991.

[18] G. Michael Schnieder, Johnny Martin, and W. T. Tsai. An experimental study of fault dezection in user

requirements. ACM Trans. on Software Engineering and Methodology, 1(2):188-204, April 1992.

[19] Sidney Siegel and Jr. N. John Castellan. Nonparametric Statistics For the Behavioral Sciences. McGraw-Hill
Inc., New York, NY, second edition, 1988.

SEW Proceedings 141 S E L- 94-006

[20] T. A. Thayer, M. Lipow, and E. C. Nelson. Software reliability, a study of large project reality, volume 2 of
TRW series of Software Technology. North-Holland, Amsterdam, 1978.

[21] Scott A. Vander Wiel and Lawrence G. Votta. Assessing software design using capture-recapture methods.

IEEE Trans. Software Eng., SE-19:1045-1054, November 1993.

[22] Lawrence G. Votta. Does every inspection need a meeting? In Proceedings ofACM SIGSOFT '93 Symposium
on Foundations of Software Engineering, pages 107-114. Association for Computing Machinery, December

1993.

[23] Alexander L. Wolf and David S. Rosenblum. A study in software process data capture and analysis. In
Proceedings of the Second International Conference on Software Process, pages 115-124, February 1993.

[24] E. Yourdon. Structured Walkthroughs. Prentice-Hall, Englewood, N J, 1979.

SEW Proceedings 142 SEL-94-006

An Experiment to Assess the Cost-
Benefits of Code Inspections in Large

Scale Software Development

Adam Porter

Harvey Siy

Computer Science Dept.
University of Maryland

College Park, MD 20742
aporter@cs.umd.edu

Carol Toman
Lawrence Votta

Soft. Production Res. Dept.
AT&T Bell Laboratories

Naperville, IL 60566
votta @research.att.com

November 30, 1994

Software

Inspection

Process

Preparation

mean = 10 days

Collection
mean = 2 hrs

• Many organizations use a three-step inspection process

• Interval - ready for inspection -> completion of repair

SEW Proceedings 143 SEL-94-006

Backgrou ndlMotivation

• Competing views

- number of sessions: single vs. multiple

- collection meetings: yes vs. no

- team size: large vs. small

- coordination of multiple sessions: parallel vs. sequential

• Empirical validation

• Costs are ignored
- interval is not normally considered an inspection cost

Hypotheses

• Inspections with larger teams have longer
inspection intervals; but do not find
significantly more defects.

• Collection meetings do not significantly
increase detection effectiveness.

• Multiple-session inspections are more
effective than single-session inspections, but
significantly increase inspection interval.

SEW Proceedings 144 SEL-94-006

Experimental Setting

• AT&T 5ESS

- 3000 software developers

- hierarchical organizational structure

• Legacy system
- 1982

- design lifetime 20 years

• Other

- ISO 9001 certified, SEI Level 2

- 5 MNCSL each in product and support tools

• Project

- compiler 30K new C++, 6K reused from prototype

- 6 software developers, plus 4 extra inspectors

Experiment Variables

• Independent

- number of reviewers per session (1, 2, 4)

- number of inspection sessions (1, 2)

-repair between multiple sessions (N, Y)

• Dependent

-inspection interval (working days)

-observed defect density (defects/KNCSL)

-meeting gain rate

- meeting suppression rate

SEW Proceedings 14 5 S EL- 94-006

Experimental Design

Number of Sessions

Number of 1 2

Reviewers Repair No Repair

1 1/9 1/9 1/9

2 1/9 1/9 1/9

1/3 0 04

Totals 5/9 2/9 2/9

Totals

1/3

1/3

1/3

1

• 2 session, 4 person treatments too expensive

• 1 session, 4 person treatment is common practice

Experimental Validity

Internal

- selection (natural ability)

- maturation (learning)

-instrumentation (code quality)

External

-scale (project size)

-subject generalizability (experience)

-subject representativeness (random draw

from population)

SEW Proceedings 146
SEL-94-006

A

,.I

O
Z
v
t_

<k,*

¢J

qD

>-
p.
m

C/)
Z
UJ

I-
(3
LU
u.
LU

80-

60-

40.It20.i...................................
0

All Data Rel_air ' Team
Sessions Reviewers

FACTORS

20" I

Preliminary

Results:
15- Factor____ss

_ Rel_lir

All Data ' Repair ' Team
Sessions Reviewers

FACTORS

• Density: Sessions, Reviewers, Team significant

• Interval: no significant factors

o
t_

Or)
>.o
<[

(:3

n

rr

o

o

Pre-Meeting Repair Total

PHASE

Preliminary
Results:
Interval

° Medians: pre-meeting = 8.5 days, total = 14.5 days

• Delayed repair sometimes inflates interval data

SEW Proceedings 147 SEL-94-006

A

W

e"
m

i=
,.I
<_
>
Ir
Ug
I-

_=R

_=
I--

ILl

=,
n- o
a.

J
1sX 1p 1sX4p 2sX 1pR 2sX2pR

lsX2p 2sX1 pN 2sX2pN
TREATMENT

• Distributions are similar

• 2sX2pR takes longest: median of 13 days

• 2sX2pN has median of 11 days

Preliminary

Results:

Interval By
Treatment

ALL

o
A o

U)
O
Z

I,'- o
tO
Ig
M.
UJ

-]

f re"m'n' 1Results:
Defect

Density By
Treatment

I sXl p 1sX4p 2sX 1pR 2sX2pR
I sX2p 2sX 1pN 2sX2pN ALL

TREATMENT

• 2sX2p treatments are the best

• 2sX2pR better than 2sX2pN by 35%

• Team size makes no difference for 1-session treatments

SEW Proceedings 148 SEL-94-006

O

o3
uJ c5

tr-
io

I--
W
I.U

(2)

0

0

U

lsXlp lsX4p 2sXlpR 2sX2pR
lsX2p 2sXlpN 2sX2pN ALL

TREATMENT

• Overall median meeting gain rate is 0.3

• lsX4p has lowest meeting gain rate

Preliminary
Results:

Meeting
Gains By

Treatment

Results To Date

• 2sX2p are most effective inspection method.

• Repair between improves detection
effectiveness by 35 %; at a cost of 2
additional working days of interval.

• lsX2p are as effective as lsX4p but most
lsX4p defects are found at preparation.

SEW Proceedings 149 SEL-94-006

Next Steps

• What makes 2sX2p inspections more effective
than lsX2p?

• Why are the interval differences not more
pronounced?

• What are the cost-benefit tradeoffs of

meetingless inspections?

SEW Proceedings 150
SEL-94-006

N95- 31243

A Process Improvement Model for
Software Verification and Validation

John Callahan I George Sabolish

NASA Software IV& V Facility

West Virginia University

7

Abstract

We describe ongoing work at the NASA Independent Verification and Validation

(IV&V) Facility to establish a process improvement model for software verification and

validation (V&V) organizations. This model, similar to those used by some software

development organizations, uses measurement-based techniques to identify problem

areas and introduce incremental improvements. We seek to replicate this model for

organizations involved in V&V on large-scale software development projects such as

EOS and Space Station. At the IV&V Facility, a university research group and V&V

conwactors are working together to collect metrics across projects in order to determine

the effectiveness of V&V and improve its application. Since V&V processes are

intimately tied to development processes, this paper also examines the repercussions for

development organizations in large-scale efforts.

1 Introduction

In effort to improve the quality of software products in safety-critical and high-risk projects, many

organizations employ verification and validation (V&V) techniques to detect and correct errors made

during the development process. Verification involves analyzing software products after each major

development stage to ensure that the product agrees with the specification established prior to that stage.

Validation involves ensuring that the products after each stage agree with the original specifications.

Although validation is traditionally performed only at later stages (i.e., testing) with respect to

requirements, we employ the broader definition.

A specific application of V&V can be characterized along three dimensions: orientation, scope, and

independence. First, V&V activities can focus on either the software development process or the products
produced by that process. Most V&V activities, however, perform a combination of both process-oriented

and product-oriented analysis. Second, the scope of V&V activities can range from being comprehensive

across all development phases, to being limited to specific subsystems and process stages. Finally, V&V

activities can be embedded within or independent of a development effort. Independence can vary over

levels of technical, managerial, and financial control [10].

Regardless of its organization, however, all V&V organizations are charged with detecting (and

sometimes correcting) errors in software products and processes as early as possible in the development

life-cycle. This implies that effective techniques must be employed that help find the most critical

[This work is supported by NASA Cooperative Agreement NCCW-0040 under the supervision of the

NASA Headquarters Office of Safety and Mission Assurance (Code Q) at the Independent Software

Verification and Validation (IV&V) Facility in Fairmont, West Virginia.

SEW Proceedings 1 51 SEL-94-O06

problems in early phases. Clear correlation must be established between these early errors and their

consequences later in the development life-cycle. Otherwise, such problems can be dismissed as false

warnings or non-critieal.

This paper describes ongoing work at the NASA IV&V Facility to develop a process improvement model

for software V&V organizations. Our effort involves establishing a framework for iterative measurement

and ongoing improvement of a V&V organization's ability to fred critical errors early and more accurately
estimate costs and benefits of V&V. Although our model is still evolving, we are working with V&V

contractors to assess the effectiveness the approach on existing projects.

2 Related Work

There is a limited amount of empirical evidence on V&V in practice, but most of the research on V&V

has focused on (1) determining the cost effectiveness of V&V relative to the cost of the overall software

development effort; and (2) developing methods for identifying errors as early as possible in the software

development life-cycle. First, the cost effectiveness of V&V has been found to depend heavily on many

factors including project size, expected lifetime of the software, volatility of requirements, and the

expertise of development and V&V personnel. Secondly, even if these factors warrant the use of V&V, it

is most important to determine how much, when, and what types of V&V to apply in each project.
Effective methods for detecting critical errors must exist to enable an adequate appraisal of what the V&V

effort saved in a project [1].

One of the most comprehensive studies of V&V [2] concludes that V&V is highly cost effective if applied

early in the life-cycle of large, complex software projects. This study, conducted by NASA/JPL, consists

of a survey of over 80 papers and related projects that include both quantitative and qualitative

assessments of V&V cost effectiveness. The JPL study strongly suggests that many projects found V&V

to be cost effective because the cost to correct latent errors grows exponentially in later life-cycle phases.

According to several key papers in the JPL study [3,4,5], V&V can fred errors early and avoid the costs of
fixing latent errors. Overall, the JPL study suggests that V&V can pay for itself if started in the

requirements phase, but also that V&V can negatively impact a project if started late.

In addition, several papers examined in the JPL study conclude that V&V also has benefits such as

significantly reduced software maintenance costs [3,6,7]. These studies fred that V&V more than pays for

itself in projects with long lifetimes due not only to increased reliability but also to decreased maintenance

costs. They suggest that V&V increases external management and technical visibility that is essential in

long-term projects where personnel turnover is high and requirements are volatile.

Other research has focused on developing effective V&V methods for detecting errors. Many of these

methods are specific to software application domains, development processes, and specification

techniques. Some methods have proven nominally effective and even ineffective when applied incorrectly

[8,9]. For example, a formal verification of code is considered too costly in low-risk projects. Although a
formal verification would increase reliability, it would not be cost effective relative to the impact of errors.

In this case, the cost of finding the errors exceeds the cost of the error occurring plus the cost of t'Lxing the

problem. The high costs of formal verification, however, can be justified in some safety-critical

applications where the costs of failure can be catastrophic.

Finally, there are several reports that advocate the use of V&V based on case studies and expert opinion

[7,10]. For example, the NRC assessment of Space Shuttle flight software development [I0] strongly

advocates the continued use of V&V on Shuttle and other large NASA projects. The NRC committee

advises that independent V&V can be highly cost effective and useful in avoidance of catastrophic

incidents in large projects because it provides visibility into highly complex interactions (often informal)

between large numbers of contractors. Because of the informal nature of many of these interactions and

SEW Proceedings 1 52 SEL-94-006

the high turnover of personnel in large projects, an independent V&V contractor can provide continuity

over the long-term on large projects and provide management and technical visibility to the customer.

3 Process Improvement for V&V

We are engaged in establishing a process improvement model for V&V organizations at the NASA 1V&V

Facility [11]. Our objective is to establish criteria for measuring V&V activities, measure on-going V&V

projects, and suggest incremental improvements to both product analysis and a V&V process. Although

our collaborations are primarily with highly independent V&V groups, small V&V groups are also
involved within specific projects.

To accomplish our objective, we are building a process improvement model for V&V based on

measurement of products and processes from both development and V&V efforts. Our proposed model is

based on the NASA GSFC Software Engineering Lab's Process Improvement Paradigm that uses

measurement as the basis for determining the effectiveness of our efforts to introduce improvements into

V&V processes. In general, a process improvement model iterates over the following steps:

1. Measure the current process;

2. Analyze strengths and weaknesses;

3. Improve the process by developing and introducing new technologies to addresses weaknesses;

4. Measure the process to determine the effectiveness of the improvement;

5. Repeat steps 2, 3, 4.

Figure 1 depicts an overview of the V&V organization and research group in context of a development
process. The next sections describe the aspects of measurement in the V&V process improvement model:

cost effectiveness, trend analysis, and error detection.

3.1 Measuring Cost Effectiveness

What is the value of V&Vto a project? If V&V finds errors early in a project's life-cycle, what are these

worth in terms of cost avoidance to the project in the long-term? Several models of cost avoidance

estimation have been proposed in the literature [12,13], but they are very general and many assume that

errors are not caught by development until testing at the end of the development life-cycle. More

sophisticated models exist, but they are specialized with respect to development and V&V processes.

We propose a framework that can be customized for specitic projects to track the cost of fixing errors in

each life-cycle phase. The framework is based on existing cost estimation models and provides an

evolutionary approach to improving the accuracy of cost-savings estimates throughout the lifetime of a

project. This assumes that the development process is cyclic because it affords opportunities for repeated

phases on the same project. Fortunately, our experimental V&V projects have cyclic development

processes that consist of multiple releases over an extended maintenance phase. It is anticipated that the

projects will incur significant functional changes that must undergo cyclic development phases.

For example, if a number of major problems are uncovered during the first requirements analysis phase of

V&V, the cost savings can be estimated based on existing models within a wide confidence range [1]. In

the next iteration of the requirements phase, we can better estimate the cost savings based on knowledge

of costs to fix errors in previous iterations of phases for that project. This allows for increased accuracy of
estimates and confidence in V&V assessments.

SEW Proceedings 153 S EL-94-006

so_=e [:_e_manl L_

v

Research

Goal: Increase Sonware Quality

Approech: Apply too4sand techniques

to catch errors as early as

possibleand increase

so.are longevity

• .i_ . "_

IV&V Improvements Research Results

Idar_ify and develop

new tools and

techniques

I
Guidelines & 51

"':.:..

• • :_.

J NASA OSMAGodl: Devek_ NASA-wide

policms,guidelines, &

standards

Figure 1: An overview of the V&V process improvement model

Part of our effort also involves factor analysis of V&V measurements to assess their impact on identifying

potential problems. A V&V analysis may find problems, but these problems may be of high, moderate, or
low impact. It is often difficult to assess the value of a technique at finding high-impact errors. More

research is needed to identify effective techniques and incorporate them in V&V processes.

3.2 Trend Analysis

Can V&Vhelp predict problems ? The status of a project is more than the analysis of its parts. While the

individual product errors may not be severe in a project, their cumulative effect can be serious. V&V

efforts will yield analysis in the form of metrics on development processes and products. These metrics

can be used by a V&V organization to predict trends that may result in schedule slippage, increased
errors, costs, and other composite effects. It is necessary for a V&V organization to spot process problems

early in the life-cycle and must have effective means to predict them. Our model relies on the cyclic

phases of development to allow us to identify trends in software processes based on the analysis of
correlation to find leading indicators in a project [14,15] that foreshadow potential problems. Once these

indicators are identified and validated, they can also increase the accuracy of estimates and confidence in

V&V assessments.

V&V has also been shown to have an influence on software reliability and maintenance. We are still

modifying existing models to incorporate the ability to estimate the impact of V&V on reliability and

maintainability. These qualifies, however, are very difficult to quantify and only meaningful in the

context of a project's goals. We axe still exploring ways of quantifying such qualities in our model so that

the full value of V&V on a project can be assessed.

As we identify improved V&V measurements and techniques, we will need to introducing new methods

into the V&'" life-cycle. Again, the cyclic nature of our associated projects allows for the incorporation of

changes at strategic points in the process. Like the SEL model, our on-going measurements will allow us

to assess the impact of such changes on the effectiveness of V&V.

SEW Proceedings 154 SEL-94-006

3.3 Error Detection

How much and what types of V&V are required on a project? It is necessary to improve the ability of

V&V to find problems in a software development project and focus analysis on the most critical aspects of

development products and processes. Our framework will analyze the success and failure of existing
V&V techniques to detect specific errors by auditing errors (i.e., V&V discrepancy reports) backward in

the V&V process. Auditing these problems should help identify gaps in the V&V processes. For example,

errors can be missed due to several problems in the V&V process including:

• Omission. The problem was caused by an error that could have been caught by the V&V process, but

was overlooked due to the lack of V&V personnel expertise or the difficulty in applying the analysis;

s Incompleteness. The problem could have been avoided via existing techniques but the lack of

information from the development process prevented its application;

• Lack of Resources. The problem could have been found but there was insufficient time or personnel
needed to fred it;

Lack of Capability. The problem was caused by an error that could not have been caught by the V&V

process because of the inadequacy of the methods and tools involved or the inherent complexity of the
error.

This is not a complete list of reasons why errors are missed, but they are typical of the way in which errors

can be classified in order to help improve detection of errors in earlier life-cycle phases. Analysis of

classified V&V errors can lead to discovery of common types of errors that may suggest new methods,

specifications, or processes.

4 Approach

The need to change V&V methods as part of an ongoing improvement program will impact the

development process. For this and other reasons, much debate has surrounded the need for V&V. Some

argue that it is more important to improve the quality of the development organization. It is beyond the

scope of this paper to completely sort out the arguments, but we see the two views as compatible. A V&V

should not simply assess the status of a development effo_ but also provide feedback for improvement of

the development process itself. In other words, V&V can act as a proc_s improvement organization for

development. The next sections describe our long-term strategy related to this view and our short-term
tasks for achieving this goal.

4.1 Long-Term: VerWmble Development Techniques

Initially, we are focusing on the ability of the V&V process to fmd problems effectively and not on

improving the capabilities of the software development process itself. However, because V&V and

develoPment are intimately related processes, we have developed a strategy for transferring improvements
to development processes based on the need for improvements in V&V.

Our long-term strategy is to demonstrate that changes to development are needed in cases where V&V is

unable to perform its task due to inappropriate or unavailable information from development. The goal of

process improvement on a development organization is to enable it to produce high-quality software, on

time, and within budget. This implies that the development effort is predictable and measurable.

Ultimately, this will lead to development techniques that are highly amenable to V&V activities. We have

labeled these verifiable development techniques (VDTs) to identify them as enabling effective V&V over

SEW Proceedings 1 5 5 SEL-94-006

other approaches. A verifiable development technique is comprised of many different phases that are

highly amenable to V&V. For example, the requirements for a safety-critical project might be expressed

in specification language that is amenable to formal analysis. In a VDT, such analysis is not simply a spot
check but coordinated with analyses performed in other phases.

4.2 Short-Term Tasks

Current research activities are focused on the short-term tasks to construct the V&V process improvement

framework. The framework is needed to form the basis of any future improvements m the area of V&V.

While it is true that V&V activities have been conducted on projects for many years, industry has yet to

define and document V&V processes involved with any degree of consistency. Working with real projects

using real project data gives our research effort the unique ability to defme a baseline set of processes that

can then be improved through use of a structured improvement process.

Many metrics, models, techniques and processes exist that can be incorporated into our framework. We

must identify those that currently exist and attempt to formulate the characteristics of new approaches.
Our short-term tasks related to our long-term vision include:

Metrics. We have identified some metrics that are highly effective in predicting the potential

occmrence of problems in software projects. We are paying particular attention to existing metric
"success" stories and studies. In addition, we are examining the "Hawthorne effect" in software

development that occurs when a V&V organization is employed. We are working with the NASA

Langley SEES effort to establish V&V baselines and compare experimental results of employing
V&V.

Processes. We are examining existing development processes and determining bow to map V&V

processes to them. In addition, we are examining V&V as related to non-standard development

processes, particularly in large-scale projects where requirements change dramatically during

development.

Classification. Because V&V cannot be applied uniformly across all phases and products due to

resource limitations, we are seeking means to classify software products according to their impact on

system failure. Such classification schemes will help tailor V&V Wocesses to direct their attention to

appropriate problems.

Testing. This traditional role of V&V cannot be totally ignored, but we plan to move "testing" to

earlier stages in the software development life-cycle. For instance, a "test" of the requirements

specifications can be posed as a challenge to be disputed by some analysis on the project

requirements. We are also exploring the possibility of evolving early tests into executable test suites.

Work in these areas will help establish the criteria for validating our framework employed on ongoing

projects. They are needed to establish means of assessing the cost estimates and error detection methods

at all phases of the development and V&V life-cycles.

4.3 Validation Through Application

The concept of "Strategic Alliances" formed between govemmenL industry and academia plays a critical

role in the process of validating research artifacts. The research strategy used at the IV&V Facility

consists of working relationships between research and select projects and organizations. Potential

prospects for collaboration are selected through initial discussions that focus on determining if there is
some mutual interest to serve as a basis for the collaboration. The ability to gain access to an independent

research organization that has the potential to improve processes and products without disrupting the

SEW Proceedings 1 56 SEL-94-006

normal schedule of project activities is usually a very attractive incentive to induce project cooperation. It

provides the project with research derived information and insight that would otherwise be absent. The

only cost to the activity, in return, is to supply the research organization with "real" project data that is
needed to corroborate their efforts.

Figure 1 also depicts the relationship described above. It describes the relationship between a developing

agent, an IV&V agent, a research agent, and a governing body. However, the process could work just as

well without an IV&V agent in which case research would interface directly with the developing
organization. Both cases are in effect at the Facility and seem to offer equal benefit.

For each project, software quality is achieved through process improvement. Ftrst, one must defme a

starting point or baseline. If improvement is to be made we must know where we are at. This, in the case

of the Facility is achieved by understanding the current practices of each of the selected projects or

activities and using it as a baseline. Second, there must be a method by which to measure the

improvements that are made. This can be accomplished using existing project metrics augmented by the

introduction of any research specific metrics that may be needed. Third, an organization is needed whose

focus is the introduction and measurement of new processes and products. This is the role played by the

research organization, Fourth, there must be a governing body that is responsible not only to fund the

improvement process, but to transform the results into usable products through establishment of policy,

standards, and guidelines that in turn can be shared throughout the industry.

In this model, research plays a crucial role. A developing agent seldom has time allocated to explore

potential improvement initiatives. Project cost and schedule matters are almost always take precedence

over evolving technology. Access to a research organization whose charter is technology improvement

allows advances to be made with a minimum amount of impact to the developing agent. Research in turn,

benefits from the real-time validation it rex_ives because results have been derived on real projects as

opposed to projections based on theory and classroom trials.

4.4 A Case Study: EOSDIS

One example of this type of collaboration is our on-going work with the EOSDIS IV&V contractor to

provide V&V process improvement on a long-term development project within NASA. The EOSDIS

project is well-suited because it is still in its earliest development phases and open to collaboration. It is a

large project with significant risks that can benefit from V&V because its development life-cycle is cyclic

due to staged releases of program functionality and anticipated upgrades. We view this has a unique

opportunity to introduce a process improvement model for V&V in order to ensure increasing confidence

in the face of functional enhancement and a long-term maintenance phase.

It is still too early in the EOSDIS effort for substantive measurements, but initial audits of discrepancy

reports generated by V&V suggest that a major obstacle is the lack of timely and appropriate products

from the development organizations supplied to the V&V contractor. For example, project schedules were
provided in Gantt chart form with little information about associated effort or context. Furthermore, the

time allotted to V&V to analyze the schedule did not allow the application of cost and schedule estimation

models. This limited the type and extent of V&V analysis on the development schedule.

The preliminary requirements analysis of the ECS portion of EOSDIS was completed at the end of

October 1994. Currently, we are in the process of performing cost avoidance estimates on the preliminary
requirements analysis and assessing the effectiveness of the analysis. The cost avoidance of errors found

in this early phase will be estimated based on available models and later compared with actual
performance. We will also produce confidence levels associated with these estimates.

There is also serious concern in the EOSDIS V&V effort over the fidelity project requirements and
designs. While several errors were found in the requirements, it is questionable whether or not they are in

SEW Proceedings 157 SEL-94-006

agreement with current design artifacts. The V&V contractor discovered this problem and the
development contractor is currendy fixing it before the startof the next V&V phase.

5 Summary

The NASA IV&V Facifity was established in 1994 as part of a larger effort within NASA to focus
attention on software issues. It currently houses efforts related to the Earth Observing System (EOS) and

Space Station projects. It also houses a university research team committed to measurement-based
research on actual V&V projects. This unique environment will create a testbed for new techniques in

software product and process analysis.

UllJmately, we hope to improve the quality of computer software and the organizations that develop or

help develop it. This paper does not seek to justify the use of V&V in projects but to (1) establish
guidelines for determining its effectiveness and (2) improve its practice. By basing our work on a sound
measurements program, we hope to frame V&V effectiveness within the context of its application. We

hope that our process improvement model for V&V can benefit both V&V and development efforts.

Many bamers still remain to conducting research on software development and V&V effocts. First, many
vendors are reluctant to provide measurements because it will expose them to criticism. Second, visibility
intoproprietary techniques and processes may harm their competitive advantage. Fmaily,measurements
provided by the measured project will always tend to be skewed optimistically. We are trying to address
these barriers through memorandums of understanding and other conwactual mechanisms.

On large software efforts, several agencies of the US government, including NASA, have invested heavily
m independent V&V as insurance against catastrophic errors. As development methods evolve, V&V
processes must also improve. Since V&V is a complementary process, its improvement will drive
improvements in development. We see the relationship as mutually beneficial in achieving high quality
software.

References

[i]

[2]

[3]

[4]

[5]

[6]

Lewis, R., Independent Verification and Validation: A Life Cycle Engineering Process for
Quality Software, John Wiley & Sons, New York, 1992.

The Cost-Effectiveness of Independent Software Verification and Validation, NASA Jet

Propulsion Laboratory, 1985.

Radatz, J., Analysis of IV&V Data, Final Technical Report, Rome Air Development Center,
March 1981.

Kosowski,E.,Perspectiveson SoftwareDevelopmentand Verification-Boeing757767 AFDS,

Proceedings of the IEEE/AIAA 5th Digital Avionics Systems Conference, IEEE, October 31 -

November 3, 1983, pp. 6.5.1 - 6.5.4.

Nicolai, R., Verification and Validation of IRAS On-Board Software, Proceedings of the

ESA/ESTEC Software Engineering Seminar, ESA-SP-199, October 11-14, 1983, pp. 221-226.

Daggett, P., M. Forshee, S. Forest, T. Fox-Daeke, G. Ingrain, and D. Papa, Handbook for
Evaluation and Life-Cycle Planning for Software, Volume IV, Test and Independent Verification
and Validation, ESD-TR-84-171 (IV), 1983.

SEW Proceedings 158
SEL-94-006

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Sapp, J. and C. Southworth, Orlando I -- Final Report -- Panel B -- Independent Verification and

Validation (IV&V), Joint Logistics Commande_ JPCG-CRM-CSM Conference, October 1983.

McCran% F., What have we learned in the last 6 years -- measuring software development

technology, Proceedings of the 7th Annual Software Engineering Workshop, NASAJGSFC,
December 1982.

Brosius, D., Software Validation Study, SAMSO TR-73-99, 1973.

National Research Council, An Asssessment of Space Shuttle Flight Software Development

Processes, National Academy Press, Washington, D.C., 1993.

NASA Office of Safety and Mission Assmance, Proccedings of the Verification and Validation

Workshop, Morgantown, WV, December 1993.

Boelun, B., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, N J, 1981.

Wolverton, R., Airborne Systems Software Acquisition Engineering Guidebook for Software Cost

Analysis and Estimating, ASD-TR-80-5025, Aeronautical Systems Division, 1980.

Dyson, P., K. Dyson and J. McGhan, Streamlined Integrated Software Metrics Approach
(SISMA) Guidebook, Software Productivity Solutions, Indiatlantic, FL, 1993.

Callahan, J., T. Zhou and R. Woods, Software Risk Management Through Independent
Verification and Validation, Proceedings of the 4th International Conference on Software

Quality, American Society for Quality Control Mclean, VA, October 305, 1994.

SEW Proceedings 159 SEL-94-O06

NASAN&VFeclmy

A Process Improvement Model for
Software Verification and Validation

John Callahan
George Sabolish

NASA Independent Software Verification and Vafidation Facility
West Virginia University

Fairmont, WV

l_h Annual NASA GSFC _ Engineering Workshop

NASAIV&VF_H_

Overview

• Introduction, Dimensions, Objectives

• Related work

• Process Improvement for V&V
- Cost Effectiveness

- Trend Analysis

- Error detection

• Approach

- Long-term

- Short-term

- Collaborations

- Case study: EOSDIS

, An.,.J NASAC,SFC e_g_.._ngWe,'k,,_

SEW Proceedings 160 SEL-94-006

NASA IV&V FOClIIty

Introduction - V&V

• Verification

- analyze output of development phases to ensure it
agrees with input specifications

- Are we building the product right?

• Validation

- output of each phase agrees with original specifications
(i.e., requirements)

- Are we building the right product?

• Includes many techniques
- formal methods

- testing

- inspections

19th Annual NASA GSFC Software Engineeflng Workshop

NASA IV &V F_"lUty

Dimensions of V&V

• Orientation

- products

- processes

• Scope
- comprehensive

- process limited

- product limited

• Independence
- technical

- managerial

- financial

19th Annual NASA GSFC So_wam Englnnedng Workshop

SEW Proceedings 161 SEL-94-006

NASA IV&V Facility

V &V Objectives

• Find errors as early as possible

• Develop effect analysis methods

• Establish correlation between early errors
and potentially latent errors

Otherwise...V&V analysis can be refuted or
dismissed as non-critical by development

19th Annual NASA GSFC Sofllwa_ Engineering Workshop

NASA IV& V Fac_

Related Work

• Two types
- Cost avoidance models

- Analysis methods

Conclusion: V&V is cost effective if...

- started early

- on large, complex projects

Quantitative studies show

- Significant reduction in maintenance costs

- Effectiveness is dependent on many factors

- project size, requirements volatility, expertise

,) techniques used

lgth Annual NASA GSFC Software Engineering Workshop

SEW Proceedings 162
SEL-94-006

NASA IV& V Factllty

Related work (con't)

• V&V provides

• visibility into complex interactions between

vendors in large, complex projects

• continuity on large, complex projects in face
of personnel turnovers

Sources: NRC STS Assessment, JPL IV&V

study, Orlando I Report, Mitre V&V report,
Space Division Management Guide, Lewis
IV&V book, ...

19th Annual NASA GSFC Sc41ware Englneedng WorkshQp

NASA IV& V F_Jify

Process Improvement

• Objective: Improve V&V Processes

• Strategy: Apply SEL Process Improvement
Paradigm

- Measure the current process

- Anal_tT_ strengths & weaknesses

- Im_.__grg_£_the process through new technology & methods

- Measure the process to determine effectiveness of
change

19th Anncml NASA GSFC Software Englnmedng Wor'kshop

SEW Proceedings 163 SEL-94-O06

NASA IV&V FacBfy

So.ware Deve_pment

Gad=: Dev_op and Maintain QuJly Software

IV&V

Geah |ncrease So4tware Qua_

Apweach: Apply _oo_sand tochn¢lues

to catch errors as eady as

pos_ble and increase

soilware longevity

Standards

NASA OSMA
Goals: Develop NASA-wtde

l policies, guidelines, &

standards

fgth Annual NASA GSFC Sonware Eng_eedng Workshop

NASA IV& V F_JII_

Aspects of V&V Measurement

• Cost Effectiveness

What is the value of V&V?

• Trend Analysis

Can V&V helD Dredict Droblems?

• Error Detection

How much and what tvD98 of VSV?

l_h Anew NASA GSFC Software EnM_ng W0rk:shop

SEW Proceedings 164
SEL-94-006

NASA IV& V Facility

Cost Effectiveness

• What is the value of V&V to a project?

• Finding errors early in life-cycle

• Improve estimation of cost avoidance

O.A ,

19th Annmd NASA GSFC Software Engineerkng Workshop

NASA IV&V Faclllfy

Trend Analysis

• Can V&V predict problems?

• Assess the cummulative effect on

- schedule

- cost

- effort

- error trends

• Need factor analysis on current V&V to
determine effectiveness

• Improve predictive capabilities of V&V

19th Annual NASA GSFC So411vmm Englneerlng Wod(shop

SEL-94-006
SEW Proceedings 16 5

NASA IV&V Facility

Error Detection

• How much and what types of V&V?

• Audit errors backwards in process
- Omission

- Incompleteness

- Lack of Resources

- Lack of Capability

• Will improve detection methods

191h Annual NASA GSFC Soitware Englneedng Workshop

NASA IV& V Fac#lly

Approach

• V&V can act as process improvement
organization (i.e., provides feedback)

• V&V improvements will precipitate
development process changes

• Long-term: Verifiable Development
Techniques (VDTs)

• Short-term tasks

ISth Annual NASA GSFC Softwllrl EnglneedrlPg wodclmop

SEW Proceedings 166 SEL-94-006

NASA W&VFacillty

Long-Term: VDTs

• A verifiable development technique is

- repeatable

- measurable

- amrnenable to analysis

- coordinated

• Similar to process improvement goals

tgth Annual NASA GSFC Software Engineering Workshop

NASA IV&V Facility

Short-Term Tasks

• Metrics

• Processes

• Classification

• Testing

• Get involved in on-going projects

19th Annual NASA GSFC Software Engineering Workshop

SEW Proceedings 167 SEL-94-006

_._4_VF_

Case Study: EOSDIS IV&V

• Too early for substantive measurements

• Major obstacles

- timeliness of products

- lack of appropriate products

• Currently performing cost avoidance analysis
on preliminary requirements analysis

• Investigating disjoint requirements & design

• Improving access to artifacts

19th Anm_d NASA GSFC Software Engineering W_

NASA IV& V Faci#ly

ECS Analysis

• Requirements are structured via functional

levels (Level 0, Level 1, ...)

• Lack of functional threads

• Lack of consistency with scenarios

• Next requirements analysis may be
augmented with task thread analysis

t _h Annual NASA GSFC So11_m Eng_ W_ad_op

SEW Proceedings 168 SEL-94-006

NASA IV&V Fmclllty

Risk Analysis

• Based on GQM

• Continuously assess probability of meeting
project goals

• Risk = (1-uncertainty) x Importance of Goal

• Unknown metrics contribute to uncertainty

• ICSQ 94 paper

lCj_ Annual NASA GSFC Software Engineering Workshop

NASA IV& V FaCi#t),

Summary

• Many barriers remain
- exposure to criticism

- proprietary considerations

- skewed measurements

• NASA, DoD, others have invested heavily in
V&V

• Must improve practice of V&V

• Explore roles of V&V as development
improvement agent

Ig_h Annual NASA GSFC Software Engineering Workshop

SEW Proceedings 169 SEL-94-006

NASA IV&V Fllclllty

For more information...

• WWW server

- http:llresearch.ivv.nasa.govl

• Email

- callahan @cs.wvu.edu

- sabolish @orion.ivv.nasa.gov

• USPS

- 100 University Drive

- Fairmont, WV 26554

• Phone

- 304-367-8215 (George)

- 304-367-8235 (Jack)

• Fax: 304-367-8203

191h Annual NASA GSFC Software Engineerlng Wo_

SEW Proceedings 170
SEL-94-006

Session 4: Experience Reports

Leveraging Object-Oriented Development at Ames

Greg Wenneson, Sterling Software

Lessons Learned in an Organization Transitioning to an Open Systems
Environment

Dillard Boland, Computer Sciences Corporation

Lessons Learned Deploying Software Estimation Technology and Tools

Nikki Panlilio-Yap, International Business Machines Canada Corporation

SEW Proceedings 171 SEL-94-006

SEW Proceedings 172
SEL-94-O06

N95- 31244

Leveraging Object-Oriented Development at Ames

Greg Wenneson and John ConneU
Software Engineering Process Group

Sterling Software at NASA Ames

ABSTRACT

This paper presents _som learned by the Software Engineering Process Gro_ (SEPG)
from results of supporting two projects at NASA Ames using an Object Oriented Ra_d
Prototyping (OORP) approach suptxrted by a full fealm_ visual development
environmcnL Supplemental Lessons Leamcxl from a large project in progress and a
requirements defmition are also incxaaxra_ The paper deanonstrateshow productivity
gains can be made by leveraging the developer with a rich development eavironment, ¢xrrect
and early requirements definition using rapid Im3totyping, and earlie_ and better effort
estimation and software sizing through object-oriented methods and metrics. Although the
individual elements of OO methods, RP apprm_ and OO meuics had been used on other
separate projects, the reported projects were the first integrated usage supported by a rich
development envirmment. Overall, the _ used was twice as productive (measured
by hours per O0 Unit) as a C++ development.

Combining Object Oriented (OO) methods with a Rapid Prototyping (RP) approach supported
by a rich development environment holds promise for highly productive development done right
the first time. This combined Object Oriented Rapid Prototyping (OORP) approach was used
on several projects at NASA Ames and measured over twice as productive as C++ productivity
metrics collected by Capers Jones of Software Productivity R_h. These projects were
supported by training, consulting and mentoring from the Software Engineering Process
Support Group (SEPG). Conclusions and lessons learned are presented here for two of the
projects now in production: NASA Science Intemet (NSI) Service Request (NSR) Tracking
System and SoftLib, a reusable software library management system, internally developed by
the SEPG.

SEPG Presence, Supported Methods and Approach

The Sterling SEPG acts as a software and process clearinghouse while providing no or low cost
engineering and software process, methods and consulting support for contract staff and NASA
scientists at Ames Research Center. The SEPG locates, adapts and champions new technology

and productivity improving methods primarily as a demand driven resource. We promote
several primary methods, approaches and tools which we support by providing training,
process guidebooks, consulting, tools and procurement assistance, analysis and design
assistance and project mentoring. When requested, we will approve methods and approaches if
they are def'med by published works and leveraged by available tools, but we prefer a more
proactive support presence. Our preferred methods and approaches are:

• The integration of Coad-Yourdon object-oriented analysis (OOA) and design
(OOD) methods with a rapid prototyping development approach

• O0 Software sizing metrics
• High-level visual-programming development environments.

The Coad/Yourdon (C-Y) methods were selected because they are moderately simple, easily

taught and provide consistent analysis and design representation. During this last year with

SEW Proceedings 173
SEL-94-O06

newly published works by Booch, Yourdon and others, object methods are converging and
borrowing the best from each other. Thus Ivar Jacobson's Use Cases and other current
approaches are being incorporated into the methods we sup.port. We fred these methods and
approaches are scaleable for small and large project size in simple to complex problem domains.

The SEPG supported approach is to use C-Y OOA/OOD methods [1, 2] combined with the
formal Object Oriented Rapid Prototyping approach defined in the new Yourdon Press book by
that title [3]. This involves evolutionary development with ref'mements based on feed back from

customer hands-on experimentation during approximately one to two week iteration cycles. The
process model for this approach is shown in Figure 1. The identification of customers
(requirements owners), their level of involvement and their buy-in are obtained up-front. An
initial analysis and an OO model are produced in the fast few days of the project for early
project planning and then iterated concurrently with the prototype through many incremental
additions and refinements. Formal inspections of requirements and design specifications occur
at two or three points during this evolution:

• Before prototype development
• After user approval of prototype, before tuning
• Any other time the development team feels a need to resolve emerging design issues.

Documentation

Iteration

Specs

User Services Plan Attributes Tuning

Messages

Maintenance

Figure 1 Object-Oriented Rapid Prototyping (OORP) Process

We have been experimenting with some new OO sizing and estimating metrics at Ames. These
metrics are similar to those presented by Lorenz [4] but were actually derived as a modification
of Dreger's Function Point Analysis [5] adapted to OO methods. The OO Unit metrics were fast
published in a paper by Connell and Eller in 1992 [6]. OO Unit metrics for components
(classes/objects) and services (methods) are given OOU counts depending on the number of
attributes in the object. An object with 8 attributes is of average complexity and has an OOU
metric of 5. Each of the services would also count at 500Us. Services have different counts

SEW Proceedings 174
SEL-94-O06

for add/modify/delete, output, computalionally intense, and system service but are clumped here
for simplicity. External Entities are the sources and sinks of a Source Sink Diagram which
defines the system boundaries. External entities receive counts dependent on the number of
interfaced objects in the system. Figure 2 provides guidelines for determining OO Unit metrics
counts.

OO Units provide an advantage over the Lorenz sizing metrics in that they allow for
differentiating object classes according to size, depending on the number of attributes, services,
complexity of services, and external interfaces. The differentiation scale is based on a similar
scale provided by Dreger and Capers Jones

Simple

< 7 Info Items

Average

7-14 Info Items

Complex

> 14 Info Items

Component

Service

External

Entity

300Us 500Us 800Us

400Us 500Us 600Us

< 3 Components

700Us

Figure 2

3-5 Components

10 OOUs

> 5 Components
15 OOUs

Object-Oriented Unit Metrics Matrix

Using the C-Y OOA/D methods and Cormell/Shafer rapid prototyping approaches, an early
estimate of total effort can be made from the initial analysis and OO model generated at project

startup. The OO unit metrics are counted from the w:fial model using the number and
complexity of the objects, services and external interfaces. The final delivered application
usually grows during prototype iteration to three times the size of the initial model. The
estimated times to develop the initial prototype and then the fully deployed application are
dependent upon the implementation language and environment. In our estimates, we used a
figure of 4 hours to implement an OO Unit, equivalent to the figure Dreger uses for Objective C
and Smalltalk. We reasoned that a powerful visual programming environment would be at least
as effective as ObjectiveC and Smalltalk. Our project's end results produced figures equal to or
better than that, 4 hours per OOU for one project and about 3 hours to deliver an OOU on the
other.

We recommend use of high level visual programming environments for development and
iteration of rapid prototypes. Ideally, a powerful development environment would provide
integrated capability to manipulate GUI, control, functionality and data management abstractions
at a higher level than coding in a 3GL. This is still the holy grail of development environments.
While waiting for that future momentous unveiling and heeding the current (Summer 1993) call
of requirements, we evaluated numerous vendors and selected Sybase's GainMomentum
product as a development environment which met selection requirements. GainMomentum
(here after referred to as Gain) provides object-oriented visual development tools for RDBMS
access, graphic user interface, and user defmed objects. Gain also has extensive function
libraries, a good debugging capability, and a 4GL scripting language (GEL - Gain Extension
Language) to augment visual development tools. Programming in C/C++ code is generally not
required. There is an instant context switch from edit to run mode and standalone run-time
executables can compiled when an application is complete to restrict user access. Gain was
available for Unix environments only, though recently a Windows version was released.

SEW Proceedings 17 5 SEL-94-006

For analysis and design modeling support we used the drawing and data dictionary capabilities
of Iconix's ObjectModeler for the Macintosh. Although ObjectModeler can generate code

templates, we ordy used the drawing capabilities of the tool. Consequently, the object models
and the tool's capabilities were not integrated into the developers' envtronment. One project
elected to use a Macintosh drawing tool with just as effective results.

For both projects, SEPG members acted as external consultants, trainers and mentors. Just in
time training was provided in C-Y OO methods, Rapid Prototyping, development tools and
management approaches. The SEPG also provided development tools during the early stages of
development so that development could get started on the right foot while project startup
procurements proceeded concurrently. During early stages of development, SEPG members
provided hands-on assistance with OOA and OOD modeling, prototype development, prototype
iteration and ref'mement methods, estimating, and planning support in conjunction with project
staff. When staff were completely comfortable with the methods, they assumed all development
activities from the SEPG.

The Projects' Specifics

Both the NSI and SoftLib projects were small and low risk. NSI planned for staff at 3 Full

Time Equivalents (FTEs) and the SoftLib project was planned at about 1 FTE. Due to
personnel and organizational changes, neither project reached their full planned staffing. The
NSI project was estimated to take 6 calendar months and the prototype was approved and
completed in 7 months. When the approved prototype was delivered, the users required further
work which was completed 4 months later. The SoftLib development was initially scheduled to
take 11 months and completed on schedule. With the organizational changes, we consider both
projects to have completed within projected time and costs. Project effort and metrics are
discussed in the next section.

Both of the projects used inexperienced staff assisted by SEPG consultants. The projects were
the staff's first introduction to object methods, rapid prototyping, full life cycle implementation,
advanced development environments, RDBMS and SQL.

The NSI project developed a new application to manage Intemet connectivity requests stemming
from world-wide NASA science projects. The development involved creation of two complex
data entry forms: the NSI Service Request (NSR) and the Request for Service (RFS). The
combination of these two vehicles and supporting data structures provides on-line entry of

customer profile and organization data, funding authorization, and Intemet service connectivity
requirements. The application replaced and integrated manual and ad hoc systems for several

groups, adds new functionality and provides the opportunity for further automation.

The SoftLib project re-engineered to modernize an existing reuse library management system.
The old system provided a character based front end to a database of metadata about software
components. Users had to grapple with the character mode interface to find reusable software
descriptions and then locate the actual software outside the domain of the library management
system. The new application provides a graphic X-Windows user interface to increased
capabilities. Combo-box list widgets now provide selectable keywords and other search

parameters. When users find interesting com. ponent descriptions in the hit list, the location is
presented and they can download the file using another window. The application also provides
interfaces to other applications such as a New Technology Database and other reusable libraries

including a NASA-wide BBS.

SEW Proceedings 176
SEL-94-006

In addition to the commonalty in development approach, inexperienced staff, estimating metrics
and visual development tools used, these two projects had certain other elements in common.
Both were in environments where users and developers did their work on networked
combinations of Macintosh and Sun workstations. The networks extended over many
Macintosh zones and Intemet domains within the Ames domains. Both applications required
intensive user interaction and an interface to an existing relational database.

There were also several differences between the projects in that SoftLib was developed using a
very new alpha/beta release of a truly object-oriented version of the Gain development
environment, while the NSI project used the current production release. Mentoring on SoftLib
was fairly smooth because the project was internal to the SEPG. The NSI project used multiple
and conflicting sources for consulting causing some confusion and lost time due to thrashing
back and forth between divergent approaches w information engineering versus object-oriented
rapid prototyping.

Perhaps one of the primary differences was in user's profiles and expectations. SoftLib
replaced a single text based system. The users, although from different application domains,
were familiar with a single interface. Whereas on NSI the users were from different functional
groups. There was no single application to replace; indeed, many users had evolved their own
applications using spreadsheets to support their work. Some of the replaced functionality was
being performed by data entry staff. The NSI authors felt that many of the users did not think
that they would be using the system.

Access and data security were issues for both projects. NSI's solution was at the network
administrator layer---disallow access outside project domains. SoftLib specifically needed to
allow access and file download capability throughout the Ames domains but not to outsiders.
The initial design was for security daemons, user accounts and client-server pairs for file
transfer. The access and security features were written in C due to apparent limitations of the
Gain environment. Very late in the development, the entire SoftLib security/file transfer
implementation was replaced with an Xmosaic shell with "allow" access capability for the Ames
domain and a separate Xmosaic window for file transfer. Distribution and installation
packaging were also replaced due to portability problems of executable code to heterogeneous
workstations. As a result, no software is required to be distributed to potential users and the
developer has greater control over enhancements and problem fixes. All SoftLib capabilities are
available (in the Ames domain) through the World Wide Web.

Results and Lessons Learned

The NSI NSR/RFS application is in production and being used. When the approved prototype
was delivered, the users were not happy and required 4 additional months of part time
development. Most of the users are actually on Macintoshes using MacX for X-Windows
emulation, although the system was mostly developed and demonstrated on a Sun workstation.
The result is that the delivered system is very different from what the users expected. The
system feels slow for this application on this network. Part of the problem appears due to

heavy server loading and the earlier version, reduced-capability of Gain data managers.
Macintosh client performance is less than half Sun workstation performance due to remapping

for MacX screen display. Also screen size and pixel density are very different, giving a
degraded look and feel on the Macintosh. NSI Macs are currently being upgraded with larger
screens and graphics accelerators. Because an earlier version of Gain was used on this project,
much additional GEL scripting was needed for database transaction management.

SEW Proceedings 17 7 SEL-94-006

The SoftLib application has recently gone into production (October 1994) after successful beta
testing in August and September. The performance is faster than NSI's application and quite
acceptable. It was developed in the newer Gain version and deployed on a different hosL As
with the NSI project, the SoftLib proto_tyl_, was primarily develo .l_..d and demonstrate, d on a Sun
workstation while many users ate on Macintoshes. However, with the SoftLlb applicatton, uae
Librarian is promoting the reuse library and is using the colorful, more capable interface as

advertising leverage to attract users.

These projects are characterized as successful because they went into production and are being
used. They completed within 20% of originally planned schedule and resources. The C-Y
OOA/D methods were introduced, learned and used in development. The initial C-Y object
class models and OO Unit metrics prodded an acceptable basis for project estimating and

planning. Data points were generated to calibrate the metrics methods. Connell/Shafer rapid
prototyping approaches were used to iteratively generate a hands-on requirements model the
users requested and then a deliverable product. A new object oriented development
environment was used to produce applications which are fairly easy to change. Preliminary
measurement of development time is about 3 hours per OO Unit for SoftLib and about 4
hrs/OOU for NSI. The NSI figures are higher due to the larger amount of GEL and SQL
written. These results are from inexperienced developers leveraged by visual development
environments. And we had fun!! !

We feel that an OO Unit is very similar to a Function Point as described by Dreger [5]. Dreger
(based on work by Capers Jones) provides a list of relative effectiveness of implementation
languages including 4GLs. However, Dreger only provides one single-figure productivity
metric---an average of 20 hours of COBOL development to produce one Function Point.
(Capers Jones [7] declines to give language-dependent single figure metrics. Jones prefers to
give high-low ranges for productivity, probably to prevent comparisons in papers like this.)
We generated single-figure productivity figures by taking the median of the productivity ranges

provided in Dreger's and Jones' figures. Since Jones' and Dreger's figures are given in
Function Points per staff month, we assumed 21 working days per month and 6 working hours
per day to normalize to hours per FP. From this, we show productivity figures for C (24
hours/FP), FORTRAN (20 hours/FP), C++ (15 hours/FP), Ada (14 hours/FP) and

ObjectiveC/Smalltalk (4 hours/FP).

We are not entirely comfortable with our single-figure interpretations of Jones figures. Jones'
collected metrics are from a wide range of project types and environments including MIS,

military, and system software among others. We feel that today's versions of the languages
would permit at least twice the productivity of our medians of Jones ranges. Using that
adjustment, C would be 12 hours/FP, C++ 8 hours/FP and Ada 7 hours/FP. These adjusted
figures are consistent with the high end of the productivity range Jones does provide for ..e_..h of
the languages. Following that, what our projects with inexperienced developers accomplished
in 3 and 4 hours still compares favorably to what Dreger/Jones data shows as 8 hours per
Function Point in a standard OO programming language such as C++ or 12 hours in a lower

level language such as C.

We feel our productivity could have been even better. We think about 10% of total effort on the
NSI project was spoilage due to conflicting advice provided by competing consultants from
different organizations. On both projects, productivity was lessened by the steep learning curve

of multiple elements (OOA/OOD, Gain, rapid prototyping, SOL andbasic developa_en h
experience). We estimate that overall on-the-job learning constimteo at least 3ovo o to

implementation cost on these two projects. On both pro.jects the majority of implementation
problems and effort expended were related to overcoming the data managers and database

SEW Proceedings 17 8 S EL-94-006

interface. On NSI, much GEL scripting was written to overcome the earlier version of data
managers. On SoftLib, the newer production release data managers are quite powerful, but
developers had to struggle with alpha versions and multiple Beta releases. All in all, we
estimate it took at least 20% additional development time for each project to overcome the
maturing data base interface.

Prototype size growth from initial OO model to delivered system was flat for SoftLib and about
2.5 for the NSI system. Both systems were estimated to grow to three times the OOU counts
from the initial OO model to the final system. The initial SoftLib model had an unrealistically
high OOU count because the graphic widgets were modeled as separate objects with services
rather than services of objects. A remodeling of the SoftLib initial OO model produced a 25%
lower OOU count with an actual growth of 0.5 to delivered system. The SoftLib growth was
incorrectly estimated because the SoftLib model was a detailed and almost complete model of an
existing application rather than an initial OO model of a future system. The actual hours needed
to complete SoftLib were also less than half that initially estimated, partially due to learning
from the NSI experiences.

Reuse was minimal due to the mismatched capabilities of the development environment versions
and the different application domains. The overall application framework and a few of the GUI
widgets were reused between the two projects. With a bit more care, several of the NSI object
classes (person, organization, etc.) might have been reused within SoftLib. Many of the NSI's
classes hold the possibility for future reuse in any resource management system.

In SoftLib, the Gain development environment allowed easy modification of the applications.
Because very little code is written outside the development environment, the production version
is still as flexible as the prototype was during iteration. The small amount of C code written to
provide SoftLib security and controlled fde transfer was easily replaced using the more portable
Xmosaic's file transfer and security features.

There was some learning transferred from one project to the other. The SoftLib developers
were able to make some use of NSI lessons learned. The different versions of Gain data

managers prevented more knowledge from being transportable. The SEPG members consulting
on the NSI project also consulted on the SoftLib project. That connection was lost as the
project team members assumed all responsibilities from the SEPG.

There were also some harder to measure productivity loss factors. The inexperienced developers
made some mistakes that more senior software engineers might have avoided. One side effect

of inexperienced prototypers was the hesitation to demonstrate a prototype that didn't appear
excellent. This resulted in fewer iterations and less frequent user feedback. User commitment

to requirements approval was difficult to obtain. On SoftLib there was one primary developer.
With better initial team building and work partitioning, communication would have improved
and the primary developer's workload lessened. Both projects had to pick between a less
capable GainMomentum version 2 or an in-development alpha/beta version 3. There were many
handicaps to overcome with either choice. Additionally, the inexperienced developers were not
always amenable to the mentoring available from the SEPG. This is because the application
was their first masterpiece and suggestions and proposed alternatives were often perceived as
criticism and therefore not weU received.

A major lesson learned from these two projects relative to the application of the ConneU/Shafer
rapid prototyping approach is that delivering a system (Macintosh) with a different look and feel
from the user approved system (Sun) diminishes much of the requirements stability gained from

SEW Proceedings 179 SEL-94-006

prototype iterations. In order to achieve requirements completeness, correctness, and exactness
through rapid prototyping, the following must occur:.

• real requirements must exist
• correct identification of user representatives in a development plan
• establishment of requirements ownership in a development plan
• user commitment to prototype review and approval as planned.

Execution of these basic rapid prototyping principles was flawed on both projects, resulting in
some user dissatisfaction. Experienced rapid prototypers know that successful rapid prototyping
is an evolving team-based process owned mutually by users and developers. The Space Station
Centrifuge project, for instance, proved that the OORP approach can be used to overcome group
dynamics or political fragmentation problems if users become sufficiently involved in prototype
iterations. On the Centrifuge project, solid requirements definition was achieved in 14 iterations
over a 10 week period with approval from 100 users. These users were in three different groups
(operations, controls, and human factors) each competing for system resources and
requirements implementation.

Good News

These projects were sized and scheduled using estimates derived from OO metrics applied for
the first time to real projects at Ames. A conservative factor of four hours per OO unit was used
for NSI project estimating. The actual productivity figure is just about that. On SoftLib, we
used 2 hours per OO unit based on an preliminary estimate of the NSI metrics and hopes for the
more mature version of Gain. Preliminary figures indicate a productivity figure at about 3 hours
per OO unit. With the results and the offsetting productivity losses mentioned above, we feel
the metrics have been initially validated and will continue to be used and refined. From
previous and concurrent experience with other prototyping tools, we feel the metrics can be
generalized for the entire class of visual-programming in very high level rapid prototyping tools
similar to GainMomentum. These kinds of tools are much faster than procedural languages
such as C and FORTRAN. They measure several times faster than OO languages such as C++,
and hold promise to be significantly faster than OO development environments such as
ObjectiveC and Smalltalk. On our projects, when such tools are combined with a formalized
approach to OORP, the development time (with inexperienced developers on first time projects)
has been measured at equal to any other approach we customarily use. If we adjust our
project's productivity's by the estimated losses for learning curve and tool problems, we have
an approach about twice as fast as the figures put forth by Dreger for ObjectiveC and Smalltalk

The OO paradigm is difficult for many developers to master. We have found at Ames that non-
complicated modeling methods assist developers in learning and users in understanding. Our
modeling activities provided an easy way to depict the initial requirements and explain them to
the user before the fast prototype was started. The model also acted as an alternate design
mechanism with the alternatives or not-yet-built components shown in a different color or
otherwise called out. The modeling activities paralleled or led the early development; however,

once the major components and inheritance were established, the modeling activity fell to a
lower priority. Subsequent metrics determination required the model to be updated and
reviewed--which should have been done concurrent with development.

The services provided by the SEPG proved to be valuable and particularly necessary for new
developers. The learning curve was too steep for the inexperienced staff to contemplate without
the training and on-project consulting provided by SEPG members. At Ames, the SEPG
advises, rather than controls, projects. This means that staff may always feel free to ignore

SEW Proceedings 180 SEL-94-006

SEPG advice. It has been found that staff are much more likely to heed the advice when h is
perceived as free help rather than criticism.

In the course of these two projects a happy accidental discovery was made: there need be no
difference between a good Coad/Yourdon OOD object class model and a good RDBMS schema.
A mapping can be done such that each object class on the OOD model maps to a table in the
database and all required database tables are modeled as object classes. This mapping is
possible because the Coad/Yourdon methods work very well for data oriented applications. The
methodology guidelines for identification of good object classes map well to normalized
RDBMS tables. This is not to say that these methods do not work well for other kinds of
applications. One of the most successful applications of OOA/OOD and OORP at Ames is the
development of real-time data acquisition software for the new 250,000 LOC Standardized
Unitary (wind tunnel) Data System.

Summary

The Rapid Prototyping approach combined with Object Oriented methods and leveraged by
visual programming development environments show solid promise to significantly improve
development productivity while generating the system the users request. Although the
productivity metrics are preliminary and based on a few data points, it appears possible to easily
exceed the productivity compared to creating an application with ObjectiveC or Smalltalk. The
projects' productivity measures about twice as effective compared to the high productivity range
of Dreger/Jones' C++ metrics. We have also shown it is possible for less seasoned engineers
using these approaches and assisted by skilled mentors to exceed the productivity of seasoned
developers using less effective techniques. We look foreword to measuring fully experienced
developers using these highly leveraged environments.

On future OORP projects, thereare some things we will do differently, as a result of these
projects. We will strive to make sure that we always deliver the system the users really
approved, and not slip in a new, unapproved look and feel for delivery! We will pay more
attention to psychological factors in dealing with inexperienced staff and uncommitted users.
We also need to keep our OO models in better synchronization with the development activity;
perhaps that can identify more intentional reuse opportunities. We will try to be more thorough
in assuring that original plans are carded through to ensure that users' needs are truthfully
identified and responsibilities met.

We would like to compare our metrics to other OO projectsindifferent domains and
environments. We used project data captured by Lorenz and Kidd [4] to do a rough comparison
to SmaUtalk and C++. Their averaged data indicates Smalltalk productivity of less than 1 hour
per OOU and a lower productivity for C++ at 3 hours per OOU. This three-to-one ratio is
consistent with the Jones and Dreger data. The Lorenz data are from only a few projects but

imply a higher productivity than our projects. However, as with the Jones data, we would need
more contextual information about developer experience, environment capability and accuracy
of the collected data to gauge the comparison and possibly the leveraging effect of different

methods on productivity.

There are some other things these projects have caused us to think about, but we have not as yet
come to any conclusions. We need to devise some more efficient means for providing expert
design guidance to projects so that guidance is heeded more consistently. We need object
oriented design and quality metrics in addition to sizing and estimating metrics. We also need
object reusability guidelines and metrics. Furthermore we wonder if it would improve

SEW Proceedings 181 SEL-94-006

application of SEPG services and better serve the customer if we withdrew SEPG support to a
project rather than compete as one of several consulting sources.

Bibliography

1. Coad, P. & Yourdon, E. Object-Oriented Analysis, New York: Yourdon Press (Prentice-
Hall), 1990, 1991.

2. Coad, P. & Yourdon, E. Object-Oriented Design, New York: Yourdon Press (Prentice-
Hall), 1991.

3. CormeU, J. & Shafer, L., Object-OrientedRapid Prototyping, New York: Yourdon Press
(Prentice-Hall), 1995.

4. Lorenz, M. & Kidd, J., Object-Oriented Software Metrics, New York: Prentice-Hall, 1994.
5. J. Brian Dreger, Function Point Analysis, New York: Prentice-Hall, 1989.
6. Connell, J. and Eller, N., "Object-Oriented Productivity Metrics", NASA Quality and

Productivity Conference, 1992.
7. Jones, Capers, Applied Software Measurement, Assuring Productivity and Quality, New

York: McGraw-Hill, Inc., 1991.

SEW Proceedings 18 2 S EL-94-006

°m

...J

LEVERAGING
x

OBJECT ORIENTED DEVELOPMENT

at NASA AMES

Greg Wenneson and John Connell

,.

SEPG

Sterling Software

at NASA Ames

November 30, 1994
/

_.-"

°-

SEPG Experiences,

Lessons Learned

\

Combination of :

• OO Methods

• Rapid Prototyping

• OO Metrics and Estimating

• Leveraged by Tools

x. Leveraging OO Development at NASA Ames

!

SEW Proceedings 183 SEL-94-006

._m
y

/,-

/ SEPG

Supports By:

• Training, Consulting, Guidebooks and Tools

"Supported" Methods:

• Coad-Yourdon OOA/D

• Connell-Shafer Rapid Prototyping

• OO Metrics and Estimating

• HyperCard, JAMM, GainMomentum

"Approved" Methods ...

Leveraging OO Development at NASA Ames
Jm_

m_ 3,,

w

S y
/

Coad-Yourdon OO and...

• Object Classes,
Attributes and Services

• Subject Layering

• Problem, Human I/F,
Task and Data Mgt
Domains

plus

• Source-Sink Diagram

• Object Control Matrix

,. Leveraging OO Development at NASA Ames m_ 4
jJ

SEW Proceedings 184
SEL-94-006

OORP Process Model

)
..... Leveraging OO Development at NASA Ames m_ 5

OO Rapid Prototyping

• Identify Requirements Commissioners

• Initial Analysis, OO Model, Estimate and Plan

• Prototype Initial OO Model

• Iterate with User: ~ lhr New Functionality

• Final Req'ts User Approval

• Tune, Re-engineer, Document, Inspect

• Acceptance Test and Deliver

Leveraging O0 Development at NASA Ames lB_ 6
7'

.J"

SEW Proceedings 185 SEL-94-006

/"
/

Component

Service

External

Entity

OO Unit Metrics Matrix

Simple Average Complex

< 7 lnfo Items 7-14 lnfo Items • 14 lnfo Items

3 CUs 5 CUs 8 CUs

4 CUs 5 CUs 6 CUs

< 3 Components 3-5 Components • 5 Components

7 CUs 10 CUs 15 CUs

• Object Complexity by Number of Attributes

• External I/F Complexity by Number of Objects

• Effort = OOUs X Hrs/OOU X 3 (Prototype Growth)

..... Leveraging OO Development at NASA Ames m_ 1 ...///

/

Visual Development Tools

GainMomentum (Selected in 1993)

• Object Oriented

• GUI Development

• Data Management

• Function Libraries

• 4GL-like Scripting Language

....... Leveraging OO Development at NASA Ames B_ 8 ,,
.J

SEW Proceedings 186
SEL-94-006

Project Descriptions

NSI Service Request (NSR): Intemet Connections

• Manage, Track and Schedule Resouces

• Automate Manual and Separate Systems

• Potential 100+ users

SoftLib Library Management System

* Reusable Library Component Xwindow Interface

• Re-engineer Text Based System

• Ames-wide User Base

\ Leveraging OO Development at NASA Ames
BB_ 9

J

\

y.---

/"

Common Factors

• Both systems Small and Low Technical Risk

• Staff Inexperienced; Then Trained

• Introduced OO and RP

• Introduced New Development Tool
GainMomentum v 2. and Beta v3,0

• Users Spread Over LANs: Macs and Suns

•... Leveraging OO Development at NASA Ames

,J
m

mH
_o.J

SEW Proceedings 187 SEL-94-006

/..'°"

i •

Results - NSI

Planned 6 mo.; Approved Delivered in 7 mo.

Initial Model -140 OOUs; Delivered -550 OOUs

• Estimated 4 hrs/OOU; Delivered ~4hr/OOU

Performance Not as Expected

Needed Much Additional SQL

Delivered Approved Prototype Not Used

4 More Months Development

• Problems Not Technical

Leveraging OO Development at NASA Ames B_ 11 "
°°_-"

w
=

Results - SoftLib

• Planned 11 mos; Delivered in 11 mos.

• Initial 453 OOUs; Delivered ~ 450 OOUs

• Estimated 2 hrs/OOU; Delivered ~3hrs/OOU

• Some C Code; Replaced by xMosaic

• Newer Version of GainMomentum

• Some Structure and Widget Reuse

• System Performance Satisfactory!

.... Leveraging OO Development at NASA Ames

J
m_ ,2/

j"

SEW Proceedings 188 SEL-94-006

-

/"

What Worked

• OO & RP Work Well

• OOU Metrics and Estimates Work

• Development Tool Leverages Productivity

• SEPG Assistance Critical to Success

• Productive Development Approach

...... Leveraging OO Development at NASA Ames
jZ"

.....--"

/-

J Improvement Needs

• SEPG Advice Optional

• Steep Learning Curve: 30%

• NS110% Multiple Consultant Spoilage

• Following RP Approach

• Non-Technical Issues

- User Buy-In / Commitment

- Developer Ego

• Reuse Criteria

Leveraging OO Development at NASA Ames B_ 14
.J

!"

SEW Proceedings 189 SEL-94-006

/r

i Learned

• Deliver what Users Approve ...

• Make sure Users knowledgeably Commit

• RP Can Help Overcome Scattered Users

• Tools Have Warts - Know Them!

• C-Y OOD Obj-Class Model like RDBMS Schema

• C-Y OOA/D Methods Simple and Powerful

• Promoted Methods Leverage Productivity

...... Leveraging OO Development at NASA Ames

SEW Proceedings 190
SEL-94-006

N95- 31245

Lessons Learned in Transitioning to an
Open Systems Environment

Dillard E. Boland, David S. Green, Warren L. Steger

Computer Sciences Corporation

10110 Aerospace Road

Lanham-Seabrook, Maryland 20706

_,.;jj- /

Abstract

Software development organizations, both commercial and governmental, are

undergoing rapid change spurred by developments in the computing industry. To

stay competitive, these organizations must adopt new technologies, skills, and prac-

tices quickly. Yet even for an organization with a well-developed set of software

engineering models and processes, transitioning to a new technology can be

expensive and risky. Current industry trends are leading away from traditional

mainframe environments and toward the workstation-based, open systems world.

This paper presents the experiences of software engineers on three recent projects

that pioneered open systems development for the National Aeronautics and Space

Administration's (NASA 's) Flight Dynamics Division of the Goddard Space Flight
Center (GSFC).

Introduction

How can an organization effectively accomplish

technology transition? Introducing a new tech-

nology into an organization requires an invest-
ment. But what is the nature and size of that

investment, and how long will it be before bene-

fits are realized? How can one quantitatively
define these benefits and measure the results?

Whatever the ultimate reward of the technology,

transition is a step into uncharted waters. Tech-

nology infusion requires managers to rethink the

way they approach the ordina_ project man-

agement challenges of developing effort esti-

mates, achieving planned productivity, and

dealing with evolving requirements.

The authors of this paper develop software sys-

tems under contract to the NASA/GSFC Flight
Dynamics Division (FDD). For more than two

decades, the FDD has successfully fielded soft-

ware systems to support NASA spacecraft

missions in a relatively stable mainframe/-

minicomputer environment. This stability has

allowed the FDD to optimize its software

development process. During the first half of the

1990s, the authors worked on three projects in
the forefront of the FDD's transition from its

legacy environment to a workstation-based open

systems environment. We discovered that our
established development process had to transition

as well, in unanticipated ways. Our experiences
in this transition and our lessons learned are

recorded here with some recommendations for

managing technology transitions.

A model commonly used for technology transfer

conceives of technology as moving from a pro-

ducer to a consumer organization. The transition

moves through the phases of early experimenta-

tion and exploration to technical maturity. The

projects discussed in this paper fall primarily

within the explorato_' phase, where work has

progressed from initial experiments to full-scale

development, but the technology is still used by a

SEW Proceedings 191 SEL-94-O06

minority of the organization's staff. Marvin

Zelkowitz defined these phases in a paper pre-

sented at the 18th Annual Software Engineering

Workshop, 'SoRware Engineering Technology
Transfer: Understanding the Process."

This paper provides information on the software

development organization, then summarizes our
observations on each of the case study projects.

We then organize the lessons learned and rec-

ommend elements of a technology transition plan

and ways in which new technology projects

might be better managed.

The FDD Software

Development Organization

The FDD entered the transition with a mature

software development organization that included
the Software Engineering Laboratory. (SEL), a

research and process improvement group whose

mature measurement program, cost and schedule

estimation models, and management guidelines

support software development and technology
transfer in this environment.

The FDD had patterned its success on a basic

scientific method of gradual, continuous improve-

ment in software engineering technology in a

stable computing environment. Controlled inno-

vations were introduced to test new techniques

and tools. Studies usually were conducted

through pilot projects that applied the new tech-

nology under strict controls, with the results
evaluated against the organization's norms. The

FDD would then incorporate proven beneficial

technologies into the standard technology suite.

The FDD had made little investment in explor-

ing open systems technologies. The FDD's few

projects outside the mainframe environment were

considered out of the organization's mainstream.

Developers collected few statistics, and few

software engineering experiments were con-

ducted on these projects. When the computing

industry began to shift toward workstations, the

C language, and open systems concepts, the

FDD had little background in these technologies.

Since 1990, the FDD has been moving toward

workstation computing platforms and open sys-

tems technology, driven primarily by factors
external to the development organization. They
have done so w4thout the benefit or lead of SEL

experiments. Figure 1 illustrates the FDD's

Approximate percent

of yearly software
budget spent on

projects using open
systems technology

Schedules of case

study projects

7O

60

50

40

30

20

10

Technology Exploration

_0 _ OjO/

Technology Maturity

/

/

/

/

/

/

/

/

I u,x I

Figure 1. FDD Transition to Open Systems

SEW Proceedings 192 SEL-94-006

investment in new technology exploration and the

quickening pace of the transition. The case

studies discussed in this report are shown at the

bottom of the figure in their chronological
context.

The Case Study Projects

Table 1 provides an overview of the three case

study projects, listing the size and language,

operational computing environments, and devel-

opment tools. The projects were planned by

tailoring the domain-specific FDD cost and

schedule models. The tailoring allowed for some

training on specific new technologies. As work

progressed, plans were revised to reflect the

technology issues. Figure 2 summarizes the

development results compared to the plan.

Case Study 1: User Interface

Executive (UIX)

The FDD saw a need for a common framework
in the new environment. The FDD planned the

UIX as a common user interface and executive

framework for distributed mission support sys-
tems. The decision to base the user interface on

X/Motif was primarily driven by industry trends.

The aim was to create a configurable system to

be used by developers working in Ada, C, or

FORTRAN to build application programs that
shared a common set of interactive tools. The

application developers would not be required to
code in X/Motif or to use a GUI builder. The

UIX would allow application users to control

multiple, distributed processes in a platform-

transparent manner. Finally, the FDD required

that the UIX support existing hardware

Table 1. Case Study Project Characteristics

Project

Descriptors

Size in KSLOCs

and Language

!Platform and

Infrastructure

Software

Development

Tools

Case Study 1: UIX

65,000 C

• 386 and 486 PCs

• Santa Cruz Operation (SCO)
UNIX

• I-IP 9000/7xx series

workstations

• HP/UX

* External Data Representation

(XDR)

• X/Motif(X11R4, later R5)

• Intersolv PVCS version

control

• SCO Open Desktop toolset

Case Study 2: GSS

212,000 Ada

• Digital Equipment Corp.

(DEC) VAX 8820 (later Alpha

AXP/4000), open VIvlS

* 486 PCs

• SCO UNIX

• HP 900017xx series

workstations

• liP/UX 9.0.3 or higher

• DEC Configuration Manage-

ment System (CMS)

• DEC VAXSet Development
Yoolset

• DEC Ada Compiler Version
2.2

• Rational Software Corp.

VADSelfAda for 486 SCO,

HP/UX

Case Study 3: XTE AGSS

66,000 C

58,000 FORTRAN

9,000 User Interface Language

(UIL)

• Hewlett-Packard (HP) 7xx
workstations

• HP/UX

• X-terminal and VT2000

emulation

• X/Motif(Xl IR5)

• Builder Xcessory (X Window

GUI builder)

• t-[P full-screen editor

• t-IP desktop environment

SEW Proceedings 19 3 S EL-94-006

KSLOC

240

220

200

180

160

140

120 -

100 -

8O

6O

4O

20

Size

97% growth

65

_%growm

212

177% growU_

133

Weeks

120

110

100

90

80

70

60

5O

4O

30

UlX GSS XTE AGSS

24% grow1_

104

20

10

0

UlX

In p,annedII actua,I

Schedule

88

GSS XTE AGSS

Compare to size growth in 20% to 40% range and schedule growth in 5% to 35% range
on recent maintenance and VAX development projects

Figure 2. Planned Versus Actual Size and Schedule

(the IBM mainframes and Intel-386 PCs) to the

maximum extent possible.

Prototyping played a crTtical role. The ambi-

tious goals of the UIX project were all the more

challenging because it was the first to use open

systems technology, within the FDD. To learn

the technology, and refine the requirements, the

development team built a prototype that covered

all major facets of the proposed UIX. Develop-

ment and evaluation of the prototype ultimately

spanned a year and a half. In parallel with the

protot3"pe evaluation, the team began specifying

the content of the actual UIX. The prototyping

experience led to architectural and conceptual

changes in the specified product, including aban-

doning the goal of supporting the IBM main-

frame as an application host and deferring

implementation of distributed process control

until industry capabilities had further evolved.

Lack of a technical infrastructure and an

organizational transition plan caused difficul-

ties. Without a preestablished infrastructure

('tniddleware" such as a network file server), the

traditional separation of concerns between the

systems support and soRware development

organizations was blurred. It was sometimes

unclear whether responsibility for selecting an

infrastructure product lay with the project that

first needed the capability (in this case, the UIX)

or with the support organization that maintained

the FDD's institutional hardware resources.

Although cross-organizational groups addressed

these issues, the lack of an overall transition plan

led to misunderstandings and organizational

friction.

The FDD's traditional functional requirements

and specificatTons methodology was not

sufficient for establishing the infrastructure.

Software developers, especially those from

mainframe backgrounds, tend to take the exis-

tence of a computing system architecture for

granted, but this was not the case with the UIX.

The developers attempted to define the required

software infrastructure using data flow diagrams

and functional specifications, the method with

SEW Proceedings 194 SEL-94-006

which they were familiar. Unfortunately, their

limited knowledge of the technologies involved

and the immaturity, of available products mud-

died the development effort. One round of proto-

typing followed by one round of specification

development was not sufficient, nor was the

specification formalism conducive to iterative
refinement.

Prototyping experience led to technical learning

but not better planning. Although the prototyp-

ing experience clarified technical issues, it taught

the developers little about planning the develop-

ment project. They believed that the effort saved

by rapid protot)qging would offset the additional

effort needed to come up the learning curve on

the new technologies. In the actual project

experience, there was still a substantial learning

curve in spite of an overlap of development team

members with the prototyping team. (For

example, the complexi b' of X/Motif coding was

underestimated.) The prototyping team achieved

the organization's average productivity based on

historical data. However, productivity on the

actual UIX development was initially only half

daat of the proto_10e project, as the team faced

continued technical learning as well as the

documentation and inspection demands of a dis-

ciplined development methodolo_'. Further-
more, the final system was larger (by a factor of

about two) and more complex than indicated by

the prototyping

Case Study 2: Generalized
Support Software (GSS)

The GSS project transitioned the post-

integration development phase only. The GSS

is a multiapplication flight dynamics support

class librau, designed to interface with the UIX.

The GSS project was the FDD's first Aria lan-

guage software development project to make the

transition to the open systems workstation envi-

ronment. Unlike the other two case studies pre-

sented in this paper, the GSS was not developed

in an open systems environment. The GSS was

designed, coded, and integrated in the standard

development environment for Ada-based

software projects in the FDD, which was a DEC

VAX system (later, a DEC Alpha system). The

code was then ported to the SCO UNIX envi-

ronment on PCs for integration with the UIX to

create the operational system (an attitude

telemetry, simulator), with the UIX providing the

user interface services. Thus, the technological

"leap" taken by GSS was considerably smaller.

The infrastructure needed for a workstation-

based development was underestimated When

the GSS project started production in January

1993, the FDD did not have sufficient worksta-

tions and associated Ada development tools to

support a development the size of the GSS on

workstations. The GSS project was not budg-

eted to procure the workstations and tools needed

to develop the system totally in a workstation

environment. FDD management decided that the

most cost-effective approach would be to

develop the GSS software on the institutional

Ada development platform, a VAX 8820 mini-

computer, until the build integration test phase.
At that time, the software for the build would be

ported to the workstation environment.

A familiar development environment helped

control system growth. The growth in size of

the GSS is fairlv consistent with FDD projects

over the past 5)'ears. The reasons for the rela-

tively limited gro_th compared to the other case
studies are

* GSS is developed in Ada, a language FDD

softnvare developers have been using for
almost a decade.

* The developers were familiar with the GSS

development environment and toolset, and

only the latter phases of the life cycle (build

integration through independent test) were

performed on the workstation platforms.

The GSS project comprised pure computational

applications software, not interactive software.

The GSS project did not have to deal with user-

system interface issues in the new open systems

environment. Because the UIX system provides

the GUI for GSS-based flight dynamics

applications, the GSS project was "shielded"

SEW Proceedings 19 5 SEL-94-006

from many of the technological hurdles and

learning curve relating to building GUIs on

workstation platforms. This experience suggests

that scientific application development is less
affected when moving to open systems platforms

than is user interface soRware development.

Case Study 3: X-Ray Timing

Explorer Attitude Ground Support
System (XTE AGSS)

The FDD faced a new requirement to deliver

software on workstations. On this project the

FDD developed mission attitude ground support

applications in an open systems workstation

environment. The FDD had developed these

types of applications before but only in an IBM

mainframe environment. The FDD was required

to deliver the applications to a separate GSFC

organization, the Mission Operations Division

(MOD), for integration into their operational

system. Such applications had previously been

installed and operated only within the FDD envi-

ronment. The MOD systems use a locally devel-

oped package called Transportable Payload

Operations Control Center (TPOCC) to provide
the client-server framework

Project planning was largely based on experi-

ence in the legacy environment. The project
planners estimated size (in lines of code) of the

applications based on previous FDD systems.

The planners determined they could reuse a large

amount of FORTRAN computational code being

developed concurrently on the mainframe. Since

XTE AGSS was a first-of-a-kind project, the

planners lacked good comparisons to help esti-
mate how the use of TPOCC and X/Motif

graphics would affect the size. A productivity
rate 20 percent lower than the FDD norm was

used to account for the new technology learning
curve.

The ,VIE development effort was significantly

underestimated As it turned out, the size of the

applications was underestimated by a factor of

three, primarily because

• Planners underestimated the size of the

TPOCC and graphics-related code.

• Reused code was larger than expected.

• Requirement changes added major new

functionality.

Productivity on the initial builds was considera-

bly lower than expected. The main causes of the

lowered productivity were underestimation of the
complexity of the new technology, the lack of

X/Motif expertise on the team, and skill mix

problems. Productivity increased in the later

builds as the team became more experienced

with the technology and as the skill mix

improved; some builds met or exceeded the FDD
norm.

The traditional methodology had to change to

incorporate iteration. Only about half the unit

designs had been completed by the time of criti-

cal design review. (FDD methodology called for

all unit designs to be complete at that point.)

This indicated trouble, but the developers and

their management did not realize the full extent

of the effort underestimation until the coding

phase. Then it became clear that they could not

complete the project according to the original

plans, and they had to renegotiate the delive_
schedule and add staff. The new schedule was

still highly compressed because of XTE mission

deadlines, forcing the developers into an iterative

approach of designing and coding build by

build. For the most part the iterative approach

worked well, though it made assessing progress
difficult.

Requirements instability exacerbated problems.

It is common in FDD development projects that
software requirements evolve during the course

of development. The XTE project encountered

challenging, though not unprecedented, require-

ments instability, partly because the FDD ana-

lysts thought of ways to make the software more

generic well aider design and implementation

were underway. System specifications were

changed on several occasions to serve the best

long-term interests of the FDD. The resulting

perturbations were far more severe than they

normally would have been because the project
was in technology transition.

SEW Proceedings 196 SEL-94-006

The development team needed immersion in the

technology to come up to speed. One of the

major challenges of the project was learning the

TPOCC system. This amounted to technology
transfer from the MOD to the FDD. The

TPOCC system is large and complicated, and the

XTE development team could find no single per-

son who was expert m all aspects of the system.

Early m the implementation phase, part of the

development team relocated to the MOD devel-

opment facility for 2 months. The relocation

was very useful for promoting communications,

though interaction was limited because the MOD

developers were busy with their own projects.

The early builds implemented the TPOCC rater-

faces and were kept relatively small to allow

quick feedback. To get a testable framework in

place, the team split the first build m two when it

turned out to be far larger than planned.

Unrecognized technological assumptions created

transition problems. The biggest problem

encountered with TPOCC was not in implement-

ing the application interfaces, but in installing
TPOCC in the FDD. Differences between the

MOD and the FDD computer environments and

system administration approaches became evi-

dent. For instance, the FDD used network user

accounts, with which TPOCC was not compati-

ble. Other problems developed when the MOD

moved to new releases of the HP operating sys-
tem and Motif before these versions were avail-

able to the FDD. In retrospect, the memoranda

of understanding between the FDD and the

MOD, which only addressed XTE AGSS release

dates, should have also specified TPOCC ver-

sion delivery dates, versions of system and sup-

port software to be used, and all applicable
standards.

Increasing personal interaction and emphasiz-

ing skill mix helped alleviate problems. After

the FDD tested the releases m-house, the plan

called for delivering them to the MOD for inte-

gration into the operational environment.

Because of all the unexpected problems

encountered thus far m the project, the FDD

development team decided to work with the

MOD developers informally to integrate the

system before formal delivery. The main prob-

lems found during informal integration and test-

ing were with installation instructions, not with
the software itself.

A final factor very important to the success of

the XTE AGSS was staffing. Once the true

magnitude of the development effort was under-

stood, project management committed highly

experienced and motivated individuals to the

team. They provided a good skill mix that

included both software development and appli-

cation domain knowledge and C and FORTRAN

experience. In spite of the pressures, this
commitment led to a very good team spirit and a

successful product.

Lessons Learned

The complexity of open systems was much

deeper than anticipated in all three case study

projects. The developers learned that "hadustry

standards" are often evolving or competing con-

ventions, that COTS products are marketed

before they are mature, and that mteroperability

does not always live up to advertised expecta-

tions. They discovered how much middleware it

really takes to make a distributed system work.

The organization realized how significant the

choice of hardware is to the viability of the final

system, how much hardware is needed to fully

support a distributed development effort, and

that the costs for support software and develop-
ment environments can rival or exceed the cost

of the hardware. They also had to find ways to

overcome comparmaentalization of open systems

knowledge in their own and in interfacing organ-

izations. We have grouped these lessons around

organizational, technological, and managerial
themes.

Organizational Lessons

Organizational transinon plan. A planned

transition for the entire organization, backed by

management commitment, is needed. The case

studies indicate that the FDD approached the

transition on a project-by-project basis, not only

SEW Proceedings 19 7 SEL-94-006

reducing coordination but also slowing the dis-

persion of knowledge. Management did attempt

to coordinate activities at the top levels of the

organization, but the staff on the individual proj-
ects received little information as to how their

project fit into the plan. As a consequence,

people focused almost exclusively on the chal-

lenges of using the new technology on their own

projects, with little incentive to share their expe-

riences with others in the organization.

Changing organizational roles. Changing tech-

nology can blur traditional roles, garble com-
munications, and cause friction. No doubt this is

part of what makes transition plans hard to cre-

ate in the first place. Effects of technology

change can ripple across organizations in ways

they cannot readily accommodate. The leaders
of the organization must define and communicate

a vision for doing business using the new tech-
nolog3.' and help the staff make organizational

changes stemming from it. Changing technology

does not necessarily mean business reengineer-

ing, but if the organization is making a major
technolog3 change it should carefully evaluate

the impact on its business model as well.

Outreach across organizatTonal boundaries.

Sharing experiences across project and depart-

ment boundaries is critical during technology

transition. "Department" here means any por-

tion of the organization that traditionally prac-

tices "_aformation hiding" from other portions.
The case studies show that information barriers

can e,,dst even at the lowest levels. Groups of 5

or 10 people down the hall from each other may

not share information even though they are
engaged in parallel transitions. This may seem

counterintuitive to anyone who has experienced

the "office grapevine," but people do not grasp

organizational plans through the grapevine. Per-

sonal contact works well for transferring detailed
knowledge when people have a focus and goals,

but it takes a special effort to find that focus.

Management must provide forums, whether

formal or informal, for sharing new technology
experiences in real time without 'turf" issues

tnterfering.

Disseminating lessons learned. The FDD has a

tradition of writing good history documents after

each project to capture lessons learned, but often

they come out too late to help the project plan-

ners who really need them. Also, if a procedure

for using them is not integral to the development

methodology, the lessons may sit on the shelf

unheeded. An organization should document

lessons learned at points in the development

process well before the project's end and should

make producing and using them part of the
development procedure. The lessons should be

disseminated in a way that will make them easy

to access (for example, in a cross-indexed on-line

library'). The goal should be to coalesce the les-

sons into an institutional knowledge base.

Technological Lessons

Cultivating market awareness. The competitive

marketplace drives the evolution of open tech-

nologies, so using them effectively requires culti-
vating and maintaining market awareness. An

organization coming from a stable mainframe

environment that does not emphasize compati-
bilib' with the world beyond the vendor may be a

'_losed shop," especially if that organization

produces a very specialized product (such as

space ground support systems). The case studies

suggest that the FDD was not prepared to deal

with rapid market evolution. In the past, the

organization usually had time to choose tech-

nologies carefully and experiment with "seed"

projects. This approach was not geared to the

pace of change the developers had to adopt to
accomplish the transition to open systems. The
transition forced a cultivation of market aware-

hess, which in turn requires applying the disci-
pline and resources to track all aspects of

industry evolution. Management must actively
encourage technical staff to follow market trends

and pursue continuing education.

Training for front-line workers. Beware of

unrealistic optimism on the part of both manag-

ers and technical staff regarding the ease with

which staff can master the new technologies.

The case studies revealed that people had a ten-
dency to think in terms of distinct skills to be

SEW Proceedings 198
SEL-94-006

learned, new, but similar to existing skills. In

reality, the myriad interrelationships of a new

suite of technologies, and the industry context in

which they are evolving, are very complex. Our

experience was that the amount of ramp-up time
needed to learn new technologies, from least to

most, was for UNIX, C, networking, and

X/Motif (most difficult to acquire even using a
GUI builder). When most of the team has to

learn all the technologies together, the time
invested is significant.

Technical compatibility. When a software

development shop first adopts open systems

technoio_:, it may expect to easily interface with

open systems in client and peer organizations.
This expectation was not realized in the case

study projects; "plug and play" is not yet the

norm. Incompatibilities result if the organization

does not have detailed knowledge of the tech-

nologies used by the interfacing organization.

Open systems invite cooperation but do not

guarantee compatibility. Interacting organiza-

tions should discuss and document their agree-

ments on issues such as standards, COTS

product versions, and configuration management

assumptions.

Retooling the infrastructure. Organizations

such as the FDD with long-standing stable com-

puting environments have usually developed

customized soft'are development toolsets and a

supporting infrastructure, when moving to a

new technology, problems that were previously

solved in the legacy environment may need to be
solved again because the infrastructure and tools

have changed. Even a technically mature organ-

ization may be unprepared for the extent to

which it must develop new approaches to basic

software engineering problems that it thought it

had solved long ago. A mature organization may

be at a disadvantage because of a high comfort

level with its proven techniques.

System engineering. In all three cases studied,

the transition to open systems caused the

developers to shift from a purely software engi-

neering viewpoint to more of a system

engineering perspective. In the absence of a

stable technical infrastructure, the developers
had to devote considerable time and effort to

understanding engineering topics for which their

previous project experiences had not prepared

them. Both hardware and software components

had to be treated more or less equally. Emphasis
shifted from crafting systems from lines of code

to selecting and integrating the right combination

of hardware and software components, when no
established computing infrastructure exists,

developers must perform systems engineering

analysis at the start of the project to plan for and

procure sufficient resources.

Project Management Lessons

Realistic expectations. Project managers cannot

expect to achieve all the goals during a technol-

ogy transition that the organization achieved in

the stable technology. Aiming for these goals

can lead to over-commimaents and compromise

the success of the transition. The project man-

ager must be strategically aggressive but tacti-

cally conservative, and careful when making
commilxnents.

Accurate effort estimation. Technology transi-

tion requires investment. The SEL Manager's

Handbook, source of the FDD's project estimate

models, recommends applying an additional

effort multiplier of 2.3 when a project type and

the technical environment are new to the organi-

zation. Had the case study projects followed this

guidance, the UIX and XTE AGSS projects
would have started with much more realistic

effort estimates. The GSS project, which did not

involve the same degree of transition as the other

two, came closer to the standard model, and the

effort multiplier may not have applied to it.

Staffing and slall mix. The manager in the leg-

acy environment faces a particularly difficult

staffing and training issue. The case study proj-

ects used 'hot" technology, but because the

FDD's existing technology was mainframe

based, it did not tend to attract and retain people

with expertise in new technologies. Those

recruits who did have open systems experience

generally were not experienced in either

SEW Proceedings 199 SEL-94-006

application development or in the FDD's legacy

systems and problem domain.

Training for technical managers. One problem
with this technology transition was that the

technical managers and senior technical people

were reared in an older technology. The case

studies show a tacit assumption that project

managers would somehow "pick up" the open

systems concepts sufficiently to competently

plan and manage these projects. In fact, when

project planners lack an understanding of the

technology their team is using, they may not
understand the real issues and cannot make good

planning decisions. Open systems approaches
bring significantly different problem-solving

tools and techniques. Technical managers need

training and hands-on experience. They need to

know what they are up against when setting

schedules and budgets.

Role of prototyping. Although useful for
avoiding disaster, prototyping is not in itself a

sufficient basis for project planning. A proto-

type does not confer organizational learning.
Even a second-time use of a technology may not

uncover all the possible pitfalls. Organizations
have to assimilate information until they reach

the point of "intuition."

Methodology. Methodology requirements ori-

ented toward the routine design problem may

actually impede learning, because they assume

the problem-solving technology is already well
understood. For example, the requirement that

all unit designs be completed before any units are

coded makes it impossible to feed lessons learned
about the new environment into the design proc-

ess. Although progress is harder to measure,

iteration promotes learning the new environment.

When introducing new technologies, a more

appropriate approach may be to develop the
system framework first and the application func-

tionalitT later. The project can then be broken
into numerous small builds and progress and

expended effort assessed after each build. The

development plan should be readjusted accord-

ingly. To gait integration experience in the new
environment, functionali_' should be slipped

from early to later builds rather than delaying

delivery of early builds.

Software metrics. Metrics are critical to under-

standing the new technology. However, meas-

urement programs established for the old

technology may not be adequate for the new.
Predictors based on source lines of code may not

be meaningful when using GUI builders, code

generators, and COTS packages.

Conclusions and
Recommendations

A technology transitTon plan. While it is not our

purpose to develop a model for technology

transition planning, our observations do suggest
issues that a transition plan should address.

Table 2 presents our suggestions from the per-

spective of a fairly large organization with a
mature and stable, but dated, technology infra-

structure. (The ordering of topics does not imply

a procedural sequence.)

Climbing the hills of technology infusion.

Adopting a new technology is like climbing a hill

representing the cost of the transition. Few

computing professionals and managers are

expert at estimating the height of the hill and the

rate of progress over it. Yet as Figure 3 shows,

the increasing pace of change brings whole

ranges of hills to climb. The FDD, having suc-

cessfully applied the SEL process improvement

concepts in a stable environment, was unpre-

pared for the rapid pace of the transition to open

systems. Perhaps the FDD, with its stable envi-

ronment and funding, had become accustomed to

investigating technologies at its own pace. In the

current technological environment, however, we

may not have the luxury, to control which tech-

nology hills we will climb or when.

Can we learn to adopt technologies faster and

more efficiently? A common element in these
case studies is a failure to realize that technology

transition alters the essence of the design prob-

lem. The literature on the design process distin-

guishes between routine design and variant, or

SEW Proceedings 200 SEL-94-O06

innovative, design. In routine design, both the

problem domain and the problem-solving process

are well understood, and the main issue is

accommodating an established solution to proj-

ect-specific needs. But in variant design, while

the problem domain may still be wcU tmderstood,

the problem-solving process is not. Approaching

the variant design problem as if it were just a

more difficult instance of the routine problem, to

which slightly adjusted models and procedures

can be applied, leads to problems.

Improving management models for "'emerging

technology" projects. Variant design problems

can be expected whenever new technologies are

adopted. The software industry needs to sys-

tematize its knowledge of them. Project

planners must understand when the organization

is going through a transition that fundamentally

changes the problem-solving process so they can

approach it the fight way. Of course, the

problem is compounded by the fact that technol-

ogy drives organizational structures; as industry

Table 2. Recommended Content of Transition Plan

Topic Conmum_

How mature is the technology?. Look at the hardware/software solutions being adopted by other
organizations. Attend trade shows and conf--. Challenge the assumption that your organi-
zation is unique in its needs or functions. Be proactive in defining business direction in terms of
new technologies.

Hardware/ Challenge the assumption that existing equipment must be retained for cost-effectiveness. The

software tradeoffs cost of software development and development environments may outweigh equipment cost.

Pilot projects Define realistic goals for pilot projects; avoid developing products best left to industry (such as
distributed operating systems). Concentrate on using new technology to bolster the organiza-
tion's traditional sWengths. Keep initial transition projects small.

Personal contact Expedite personal contact across department boundaries. Establish mechanisms such as cross-

department working groups, but avoid too much sla'ucture. Allow teams flexibility to discover
what areas need focus and how to work together.

Methodology An iterative approach promotes learning. Use numerous small builds to gain integration experi-
ence in the new environment. Slip fuactionality rather than delay delivery. Challenge
methodology requirements focused on the routine design problem.

SEW Proceedings 201 SEL-94-006

Where are we on Infusion Hill?

Where are we going and when will we get there?

cost ? ?

B _

old technology

time V

Figure 3. The Hills of Technology Infusion

retools, organizations discover possibilities that

prompt them to reexamine their missions.

Although this exploration can be guided only in
broad outline, the need to steer projects through
these uncharted waters remains.

New Directions for the FDD

Despite transition problems, the software devel-

oped by the projects we studied appears to be of

good technical quality. The XTE systems were

proved reliable in testing and are being reused by

other projects for upcoming missions. New proj-

ects are using the UIX and the GSS in their

designs. The FDD itself is embarking on full-

scale conversion to a distributed system, porting

or replacing up to 6 million lines of legacy sot_-
ware. A stable infrastructure for open systems is

beginning to evolve within the FDD, improving

prospects for success.

Moving a large organization from a mainframe

legacy to a new environment of open systems is a

complex technology transition problem. The
transition involves much more than a simple

switch of tools and techniques. Transitions that
cause sudden shifts from routine to variant

design problems are likely to become more
common in the future. Our challenge is to apply

organizational learning techniques in staying

abreast of industry developments, and to effec-

tively incorporate them in our experience base.

Acknowledgments

The authors gratefully acknowledge the help of

Marvin Zelkowitz of the University of Maryland

and Myma Regardie of CSC in clarifying our

concepts and consulting on the presentation. The

original inspiration for this report was

Zelkowitz's paper on the technology transfer

process.

References

Landis, L., S. Waligora, F. E. McC-arry, Rec-

ommended Approach to Software Development

(Revision 3), Software Engineering Laboratory,

SEL-81-305, June 1992

Landis, L., F. E. McGarry, S. Waligora, et al.,

Manager's Harribtx_ for Soflmare DewJqtmamt

(Revision 1), Software Engineering Laboratory,

SEL-84-101, November 1990

Zelkowitz, M. V., 'Software Engineering Tech-

nology Transfer: Understanding the Process,"
Proceedings of the Eighteenth Annual Software

_g Workd,op, Software Engineering
Laboratory, SEI.,034)03, _ 1993

SEW Proceedings 202 SEL-94-006

Lessons Learned in Transitioning to an
Open Systems Environment

Dillard Boland
Dave Green

Warren Steger

Purpose and Method

[] Problem: Transition to a new technology requires investment
before benefits are realized -- how can we plan and manage
efficient transitions in the midst of rapid industry evolution?

[] Method: Study three projects in the GSFC Flight Dynamics
Division (FDD) moving from a mainframe environment to
"open systems" workstation technology

[] Goal: Improve our understanding of technology transition
and identify lessons learned

f'lPe.,

SEW Proceedings 203 SEL-94-006

Background: The FDD Software
Development Organization

[] Through the SEL process, the FDD has achieved a track
record of continuous improvement in reuse, error rates,
and other software characteristics

I-I Stable development environment: IBM mainframe with
FORTRAN, and DEC VAX with Ada

[] Focused SEL experiments: OO, Ada, Cleanroom, IV&V,
resources usage

[] Computing environment held relatively constant while
process and products evolved

f'd,'lP'
tB_ItB

Background: Transition of the FDD to
Open Systems

[]

[]

[]

liP0"
w_

FDD/SEL achievements were within the context of
stable mainframe and VAX computing environments

Now FDD is moving toward open systems

• Workstation computing platforms, industry
standards, and conventions

• Use widely available COTS products; emphasize
portability and interoperability

• Goals are economic and technical: less vendor

dominance, more competing solutions, "more
bang for the buck"

How will this dramatic change in computing
environment affect our products and processes?

SEW Proceedings 204
SEL-94-006

Background:
Open Systems

Transition of the FDD to

m

Tectmodogy Exploration
70-

sod

Percent of ym=rly 50'

budget spent on

software projects 40-

using open

technologies
30-

Schedules of case

study projects

20-

10"

Technology Maturity

e
s

s s
s

s

1991 1992 1993 1994 199S 1906

g/////,_/////A

I rrEAOSS I

i=j,,r
t,,,_t=

The Case Study Projects

UIX PC (SOD UNIX), HP 65,000 C Mul_application user
interface system

GSS DEC Alpha, HP 212,000 Ada Multiapplication attitude

support components

X'rE AGSS HP 150,000 C Mission attitude ground
(two..b_.m) and FORTRAN support applications

Planned using SEL models based on local mainframe and VAX experience

with adjustments for new technology

SEW Proceedings 205 S EL-94-006

Case Study Projects: Comparision of
Results

240-

220-

ZOO-

1110-

160-

140-

KSLOC 12o-

100-

IiO-

$0-

40-

2o-

0-

11=
mm

U_RI GSS R1 XTE AGSS

120"

110"

100-

SO-

lO-

70-

WmC_S S0-

50-

40-

30"

20-

10-

0-

2,m inBg, IIP.,_ It.,ipm,_h

UIXRI GSSR1 _ AGSS

rrr

Compare to slim growth In 20% to 40% range and schedule growth In 5% to 35% range

on recent maintenance and VAX c_v_opmm_l projects

Case Study I -- UIX

[] We wanted to develop a common user interface and
executive framework for interactive, distributed mission

support systems

[] We did the logical thing: up-front prototyping

• Led to necessary architectural and conceptual changes

• Not a good basis for project planning: final system is
much larger and more complex than prototype indicated

[] Lack of a preestablished system architecure ("middleware")
proved to be a significant technical and organizational
stumbling block

[] The project was refocused on the user interface and
extended: wait for industry middleware to evolve before
attacking distributed executive

i_fr

SEW Proceedings 206 SEL-94-006

Case Study 2 -- GSS

[]

[]

[]

[]

We wanted a class library of flight dynamics capabilities
from which we could build our systems; we prototyped it
along with the UIX

We wanted to transition Ada development to workstation
environment, but have not been able to except for
integration and test phases

We discovered that matching development toolset
capabilities available on DEC/Alpha/Open VMS is not yet
cost effective on our target platforms

Current plan is to phase in development tools as market
forces drive the costs of Ada development systems down
(this is already happening)

Case Study 3- XTE AGSS

[] We needed to integrate with client/sewer software developed by
another group at GSFC, and to provide our first interactive X/Motif
system for mission support (UIX was not ready)

[] We assumed we could achieve our current norms: compressed
development schedules and reusable software

[] We severely underestimated the complexity and functionality
required to meet these goals in a new environment

[] We underestimated the difficulties of interfacing with other group's
software (same "open" technologies, but environment differences
such as COTS products at different version levels)

[] Technology transfer facilitated by relocating developers to the
other organization's site to infuse their technology, and by
adopting highly iterative implementation approach

Pff
taJt,, ,o0_,0

SEW Proceedings 207 SEL-94-006

Lessons Learned: Organizational

[]

[]

[3

A coordinated organizational transition plan, with
management commitment, is essential

Changing technology can blur traditional roles,
garble communications, and cause friction,
because the "old ways" do not always adapt well to
new technology

The organization must find ways to cooperate and
share lessons learned across departmental
boundaries; technology transition is not the time
for information hiding!

Lessons Learned: Technological

[]

[]

[]

[]

Open systems and rapid industry change demand
we cultivate market awareness to replace our
"closed shop" outlook

Open systems invite cooperation but do not
ensure compatibility: stress coordination and
communication

Early training is important for both the technical
managers and the frontline workers

Problems previously solved in legacy environment
(e.g., CM, reuse) often must be solved again in the
new environment

fff

SEW Proceedings 208 SEL-94-006

Lessons Learned: Project Management

[]

[]

[]

[]

Open systems require open minds: awareness of market
trends, continuous organizational learning, structured
feedback of lessons learned

Use prototyping to avoid disaster but not as a basis for
project planning

Don't expect to achieve the goals of a technologically mature
organization while you are transitioning

We need a better management model for "emerging
technology" projects

rrr

Conclusions and Recommendations

[] We need scientific data about technology transitions: The
industry needs to honestly appraise successes and failures
and learn from them

[] Our existing SEL models are not adequate for technology
transitions: Upgrade them

[] Open systems concepts and decreasing hardware costs
force a systems (not just software) engineering approach

[] Personal contact is the most effective means of information
sharing on technology transition - need an institutional
mechanism

[] We must plan for continuously infusing technology and
commit resources to that end

SEW Proceedings 209 SEL-94-006

[]

The Hills of Technology Infusion

In a rapidly evolving industry and an open marketplace, we
must learn better skills for evaluating and adopting new

technologies

cost

old technology

time

Where are we on Infusion Hill?
Where are we going and when will we get there?

New Directions for the FDD

[] XTE AGSS subsystems are being reused for upcoming
missions

[] EOSTGSS project just completed PDR

• Up-front emphasis on system engineering

• Using UIX as part of infrastructure

[] Flight Dynamics Distributed System

• Port or replace the 6 million SLOC of our mainframe
and VAX legacy

• Will use GSS and UIX

• Infrastructure is now coming into place

SEW Proceedings 210
SEL-94-006

N95. 31246

Lessons Learned in Deploying Software Estimation
Technology and Tools

/i

Nikki Panlilio-Yap and Danny Ho
/ :_ "i, .IBM Canada Ltd. .j

Abstract

Developing a software product involves
estimating various project parameters. This
is typically done in the planning stages of the

project when there is much uncertainty and
very little information. Coming up with
accurate estimates of effort, cost, schedule,
and reliability is a critical problem faced by

all software project managers. The use of
estimation models and commercially available

tools in conjunction with the best bottom-up
estimates of software-development experts

enhances the ability of a product develop-

ment group to derive reasonable estimates of

important project parameters.

This paper describes the experience of the
IBM* Software Solutions (SWS) Toronto

Laboratory in selecting software estimation
models and tools and deploying their use to

the laboratory's product development groups.
It introduces the SLIM* and COSTAR* pro-

ducts, the software estimation tools selected

for deployment to the product areas, and dis-
cusses the rationale for their selection. The

paper also describes the mechanisms used for
technology injection and tool deployment,
and concludes with a discussion of important
lessons learned in the technology and tool

insertion process.

1.0 Introduction

Developing a software product involves
estimating project parameters such as effort,
cost, duration, and reliability. Estimates are
crucial to developing the project schedule and

allocating the necessary staff and resources.

Estimating is typically done in the planning
stages of the project when there is much
uncertainty and very little information.
Nonetheless, estimation is very important to

software development since it forms the basis

for project planning and management. It is a
cross life-cycle discipline that applies to all

phases of the development life cycle. During
the course of running the project, constant
re-estimation is vital to assess the risks at

various stages of the project. In some situ-

• IBM, AS/#O0, OS12, AIX and BookManager are registered trademarks of International Business Machines Cor-

poration.
* SLIM is a registered trademark of Quantitative Software Management, Inc.

• COSTAR is a trademark of Softstar Systems.

Nikki Panlilio-Yap is on a leave of absence from IBM Canada Ltd. and can be reached at Loral Federal Systems, 6600

Rockledge Drive, Bethesda, Maryland 20817, U.S.A. Her e-mail address is nikki@lfs.loral.com on lnternet.

Danny Ho can be reached at IBM Canada Ltd., 844 Don Mills Road, North York, Ontario M3C 1V7, Canada. His

e-mail address is danho(_torolab2.vnet.ibm.com on Internet.

SEW Proceedings 21 1 SEL-94-006

ations, the estimates have to be revised and

the project has to be rescheduled.

This paper captures the experience of the
IBM SWS Toronto Laboratory in deploying

software estimation technology and tools, and
summarizes the key lessons learned.

2.0 Estimation Technology

and Tools Deployment

The deployment of software estimation
technology and tools in the IBM SWS
Toronto Laboratory [10] consisted of three
major stages as illustrated in Figure 1.
Activities associated with each stage are
shown; each stage is described in the fol-

lowing subsections.

2.1 Understanding - The Early Stage

The Software Engineering Institute (SEI)
self-assessment conducted by the IBM SWS
Toronto Laboratory in 1991 revealed a crit-
ical need for software estimation techniques

and tools. Probably the best tools for esti-
mation are those that use models based on

historical data from one's own organization
or environment [I, 4]. In the absence of an

internally developed tool based on historical
data from the IBM SWS Toronto Laboratory
or from similar IBM laboratories that

develop multiple software products across
multiple hardware platforms, it is logical and
practical to use one or more commercially
available estimation tools. Some of these

tools have underlying models based on thou-
sands of software development projects from

industry. These tools typically use input on
the size of the product to be developed,
project constraints, characteristics of the

development team, complexity of the
product, and characteristics of the develop-
ment environment.

The Tool Evaluation and Introduction

Process described in Ho [7] was adopted in

conducting pilots and early experiments.
Once several promising tools and vendors
had been selected, the vendors were requested
to send detailed information or demon-
stration diskettes of the tools for evaluation.

Pilot experiments with some software-
development projects were also conducted by

obtaining trial licenses or borrowing tools
available at other IBM Canada Ltd. sites.

2.1.1 Criteria Used in Tool Selection

Several criteria were used to evaluate soft-

ware estimation tools. Required basic fea-
tures include the ability to:

• Give accurate estimates

• Perform automatic recalculation when-

ever some parameters are altered
• Break down the estimates into different

phases of the development life-cycle

• Support different software sizing
methods.

Some desirable and advanced features are the

ability to:

• Track project actual data
• Conduct re-estimation if needed

• Perform what-if analysis to experiment
with different parameters

• Be extensible to include user-specific

parameters
• Be adaptable to user-specific develop-

ment environments.

2.2 Installation - Making the
Selected Models and Tools Available

SEW Proceedings 21 2 SEL-94-006

Understanding Gather preliminary information

Obtain trial license

Conduct pilots
Perform technical assessment and evaluation

Installation Recommend methodology and tool

Oemo tool: I-1, group, public forums

Educate users through technical exchange

Provide consulting to interested parties

Adoption Provide broad-based education

Make tool available through

Software Lending Library

Common LAN

Capture information and experience in

Experience Warehouse
Provide lab-wide consulting service

Figure I. Stages of Software Estimation Technology and Tools Deployment

2.2.1 The Selected Models and Tools

The final decision in the choice of software

estimation techniques and tools depended on

the results of the pilot experiments. Both the

SLIM and COSTAR products satisfied the

basic requirements and possessed some desir-
able features for good software estimation

tools. Both tools produced good pilot

results.

The amount and complexity of input

required for these tools is not nearly as cum-
bersome as that required for some other com-

mercially available tools. In addition, the

underlying theory of the SLIM and

SEW Proceedings 21 3 SEL-94-006

COCOMO models is well-known and pub-

lished in the public domain. Two models
were adopted because neither one gave 100%
accurate estimates. The use of more than

one model may make up for some of the

shortcomings of each one.

2.2.1.1 The COCOMO Model and the
COSTAR Tool: The COnstructive COst

MOdel [5] is a mathematical model that esti-
mates the duration, statTmg level, and cost of
software projects. The model makes use of

the effort equation as its fundamental calcu-
lation, using lines-of-code (LOC) as its fun-
damental input.

Effort = K I x KDSI K_

where

Effort is in staff-months.
K, and K2 are constants whose values are

dependent upon the mode of develop-
ment.
KDSI is kilo -delivered source
instructions.

The effort equation is refined by multipliers
from product, computer, personnel, and
project parameters. The calculated effort also
forms the basis for estimating the project

duration and staffing.

The COSTAR tool, a DOS-based esti-

mation product by Softstar Systems [8, 15],
implements COCOMO. COSTAR 3.0 is
currently deployed in the laboratory. Esti-
mates are provided for the intermediate and
detailed models, and estimation can be per-
formed in a structured manner using subcom-

ponents. The output consists of a
development summary and a variety of

reports.

2.2.1.2 The SLIM Model and Tool: The

Software Life-cycle Model (SLIM) is a

metrics-based estimation model developed by
Putnam [I 1, 12], using validated data from
over 3000 projects from industry. The
projects are stratified into nine application

categories ranging from microcode to busi-
ness systems. The category into which most
of the IBM SWS Toronto Laboratory pro-
ducts fall is system software.

The following gives the key equation for
the SLIM model.

1

___)T 4ESLOC = PP x (x YT

where

ESLOC is executable source lines-of-
code.

PY is effort in person-years.
Y is duration in years.
b is a special skills factor that is a func-

tion of system size.
PP is a productivity parameter that trans-
lates into the productivity index (PI).

The formula is used to establish a cost-

and-time schedule for development of a
system of certain size. The productivity

parameter can be baselined through historical

project data and mapped through a trans-
lation table to the productivity index (PI).
PI is a macro measure of the total develop-
ment environment. It possesses different
averages and deviations for different applica-
tion categories.

The SLIM tool is a software product that

embodies the SLIM model. It was developed
by Quantitative Software Management, Inc.
(QSM). The tool can be customized to a
specific organization through calibration
using historical data. It automates the calcu-
lation of the optimum solution based on
project assumptions and constraints. It also

SEW Proceedings 214
SEL-94-006

has a rich set of what-if capabilities for the
assessment of time, effort, and cost risks. A

more detailed description of the tool and its

capabilities can be found in [6], [9], [13],

and [14].

2.2.2 Demonstrations and Technical

Exchange Sessions

During the course of injecting software
estimation techniques and tools, the SLIM
and COSTAR products were demonstrated
on different occasions:

• To individuals in one-on-one sessions

• To development teams in group sessions

• In public forums such as conferences and
tools expositions.

2.2.3 Limited Consulting

In addition to the demonstrations and

technical exchange sessions, in-depth con-

suiting was offered to a number of projects

whose personnel showed commitment to
learning and using the selected software esti-

mation techniques and tools. We sat down
with project managers, planners, and other

key project personnel, and walked them
through the software estimation process with
the aid of the selected tools. We also pro-

vided analysis and interpretation of the esti-

mates and tips on their use.

2.3 Adoption - Expanding the User
Base

2.3.1 Broad-Based Education

To increase the penetration of software
estimation techniques and tools within the
laboratory, we developed a two-day course.

Its objectives were to:

• Teach the underlying theories of the
SLIM and COCOMO models

• Provide in-depth training on the SI.IM
and COSTAR tools

• Provide hands-on experimentation with
the tools.

2.3.2 Tool Availability

One of the most important tasks in

deploying promising tools is to make them
available throughout the laboratory. The
target users for the SLIM and COSTAR
tools are primarily planners, project man-

agers, and team leaders.

Since the majority of the laboratory com-

munity is LAN-connected, the Toronto Lab
Common LAN [7] is used to make the tools
generally available. The Common LAN is

basically a collection of OS/2' file servers,
AIX* file servers, and end-user OS/2 and
AIX workstations, connected by multiple

token rings. A license control mechanism
limits the number of users concurrently

accessing the tools to the maximum license
count. The mechanism also provides a

means to electronically invoke the tools in a

more automated manner, as opposed to tra-
ditional manual software distribution.

The Software Lending Library is a central
location used to distribute the tools to
non-LAN users. A user who signs out a

software package is given two weeks to exper-
iment with the software. When the software

is returned to the library, an online survey is
sent to the user to gather feedback on the
tool.

2.3.3 Information Availability

Availability of tools must be accompanied

by availability of tool information and ease of
access to the information. Tool information

is accessible from:

• The Laboratory Experience Warehouse

(EW) -- the Toronto Laboratory's
version of an Experience Base used to

SEW Proceedings 21 5 SEL-94-O06

store some forms of packaged experience

as described in the Experience Factory

concept proposed by Basili and his col-
leagues [2, 3]. It is a central repository
for a wealth of information useful to the

software development community. Its
tool section consists of four matrices col-

lecting information on tools under evalu-
ation, under pilot (unsupported),

supported (by the Tools Support
Group), and rejected (not promoted).
The tools within each matrix are grouped

by development life-cycle, and the tool
documents can be accessed through

BookManager* hypertext links. The
information includes some general

description of the tool, formal evaluation
report, and user feedback.
The Window on the World (WOW)

utility is an online utility to retrieve infor-
mation for quick reference. Information
for supported tools is kept on WOW.
This includes general description, opera-
tion, licensing constraints, installation,
environment constraints, invocation

mechanism, support, and license agree-
ment.

The Software Lending Library was

described in the previous section. Avail-
able information includes tool

description, user feedback, mechanism for

requesting the tool center of competence
to contact the user and provide con-

suiting, and manuals of the tools acces-
sible through the Common LAN.

2.3.4 Lab-Wide Consulting

As more and more project groups demon-
strated a need, we made software estimation

consulting services available to the laborato-
ry's development community. Because of
resource constraints at the laboratory level,

most consulting was provided to the project
groups through project personnel who had
been trained on the use of the software esti-

mation techniques and tools. This allowed

the project groups to develop their own local

experts. It also allowed us to provide service
to more development project groups.

2.4 Level of Deployment

Five sessions of the Software Estimation
and Tools course have been offered to the

laboratory. Over 70 laboratory personnel
covering all major sub-business areas of the
laboratory have been educated on the use of
the software estimation tools. Several

projects from each sub-business area have
experimented with or used the SLIM and
COSTAR tools. Client contacts have been

established within and outside the laboratory.

Five of the seven products submitted by the
laboratory to the Market-Driven Quality

(MDQ) Assessment in 1993 stated that they
used estimation models and tools as their ini-

tiatives to improve their overall estimation

process and the accuracy of their project esti-
mates.

3.0 Key Lessons Learned

The experience we have described is based
on over three years of solid work. The
process we have followed can be applied in
general to the deployment of other tech-

niques and tools. Following are the key
lessons learned from this experience.

3.1 Technology Injection Takes Time

Deploying state-of-the-art technology and
tools takes time. Table 1 shows the elapsed

time for each stage of deployment and the
effort required on the part of the technology
champions for each stage shown in Figure 1.

SEW Proceedings 216 SEL-94-006

Table 1. Time and Effort for Technology
Injection

Deployment Time Effort

Stage (months) (PMs)

Understanding 7 7

Installation 12 14

Adoption 18 21

(On- (0.2

going) PM/mo)

It took 37 calendar months and 42 person-

months (PMs) of effort on the part of the

champions to inject the technology and tools

to the point where only 0.2 person-months

per month is now required to maintain the

level of deployment.

Users have to overcome many barriers to

become knowledgeable in the field. In addi-

tion to learning the methodologies and tools,

they have to learn about accessing the tools

through the LAN or installing the tools (if

not LAN connected). In some situations,

users may have to configure, install, or

upgrade certain components of the operating

system and learn about it prior to using the
tools. These are overhead tasks the users

must face before any true benefit in adopting

the methodologies and tools can be realized.

3.2 Management Commitment Is
Essential

Long-term management commitment is

essential to the successful deployment of

technology and tools hitherto foreign to an

organization. Management support is critical

for both the consultants and the client organ-
izations in terms of time and resource allo-

cation to tackle the overhead tasks,

education, cost of software and hardware, etc.

3.3 Champions Must Be Pro-active
and Proficient

The technology champions must be in a

position to give advice, provide consultation,

and offer assistance. They must be able to

conduct thorough analyses of project esti-

mates, and point out both the strengths and

weaknesses of the methodologies and tools to
their clients.

3.4 Easy Access to Tools and

Information Facilitates Deployment

The Toronto Lab Common LAN facili-

tates license sharing and tool invocation.

There is a cost-saving benefit since acquisi-

tion of individual copies of software for each

end user is avoided. Furthermore, end users

are relieved from the burden of tools upgrade
and maintenance.

It is important to document tool informa-

tion, formal tool evaluation results, pilot

results and user feedback, and to keep these

documents up-to-date. The use of online

surveys captures valuable tools experience
that will benefit the other users within the

laboratory and will help in defining the

strategy for software estimation techniques
and tools in the future.

3.5 Increasing the Laboratory
Community's Awareness Promotes

Buy-ln

Demonstrations and technical exchange

sessions are useful for introducing new tech-

nology and tools to the laboratory. These

occasions have given some people an
increased awareness in the area of software

SEW Proceedings 21 7 SEL-94-006

estimation and allowed others to gain in-

depth technical knowledge.

3.6 Broad-Based Customized

Education Is Effective

Broad-based customized education is

highly effective and rewarding. We strongly
encourage the same infrastructure in
deploying technology and tools in other
areas. It saves the organization money.

Course participants typically get more value
from a course taught by local experts using

real development data collected within the
laboratory on more than one model and tool,

compared to one taught by a tool vendor.
Vendor courses tend to teach limited theory
and axe confined to their product offering.

3.7 Historical Data Collection is

Crucial

The collection of historical data is critical

to process improvement. There is a crucial
need to continuously capture historical data

on in-process project parameters. The esti-
mated and actual values of the schedule,
resource allocation, defects, etc. should be

collected to improve the quality of subse-

quent estimation. Having this data is critical
for calibrating commercially available esti-
mation tools and tuning them to the develop-

ment environment.

3.8 Understanding How Data Will

Be Used is Essential

Many software developers resist capturing
estimates and the actual values of project

parameters They are afraid of how the
numbers or measures will be used or misused

by management or other groups. It is irnpor-

tant to make them understand that the col-

lected data will help managers identify strong

points and bottlenecks, and help them set
realistic goals for future software development

projects.

4.0 Future Directions

Although the SLIM and COSTAR tools
have been successfully deployed, much work
still remains. In addition to the technology

injection techniques discussed in the earlier
sections (for example, demonstrations, lec-

tures), users group meetings should be con-
ducted periodically to update the users on the
latest developments or breakthroughs. The

group meetings will also provide opportu-
nities for the users to exchange ideas and

experience.

Another area that requires immediate
attention is the technical assessment, evalu-

ation, and recommendation of size estimation

techniques and tools. Size estimates are crit-
ical inputs to software estimation models and
tools. Other related activities that comple-

ment estimation are tracking and project

management. The feasibility of integrating
software estimation tools with project man-

agement tools should also be investigated.

As product development groups switch
from the traditional approaches to object-
oriented development, the models for soft-
ware estimation are expected to change

accordingly. It is unclear at this moment
how well the existing software estimation

models apply to object-oriented software

development.

5.0 Acknowledgements

The authors thank Ann Gawman who pro-
vided valuable editorial improvements.

SEW Proceedings 218
SEL-94-O06

References

[i] John W. Bailey and Victor R. Basiti,
"A Meta-Model for Software Devel-

opment Resource Expenditures,"

Proceedings of the IEEE Fifth Inter-

national Conference on Software

Engineering, 1981.

[2] V. R. Basili, "Software Development:

A Paradigm for the Future,"

Proceedings of the IEEE 13th Inter-

national Computer Software and

Applications Conference, 1989.

[3] V. R. Basili, G. Caldiera and F.

McGarry, et al, "The Software Engi-

neering Laboratory - An Operational

Software Experience Factory,"

Proceedings of the IEEE 14th Inter-

national Conference on Software

Engineering, 1992.

[4] V. R. Basili and N. M. Panlilio-Yap,

"Finding Relationships Between
Effort and Other Variables in the

SEL," Proceedings of the IEEE Ninth

International Computer Software and

Applications Conference, 1985.

[5] Barry W. Boehrn, Software Engi-

neering Economics, Englewood
Cliffs: Prentice-Hall, Inc., 1981.

[6] Kelvin B. Fowler, A Software Cost

Estimating Tool for IBM., IBM

ASD-Bethesda, Technical Report

86.0021, 1991.

[7] Danny Ho, Deploying Software

Development Tools on the Toronto
Lab Common LAN, IBM PRGS

Toronto Laboratory, Technical

Report 74.112, 1993.

[8]

[9]

[lO]

[11]

[12]

[13]

[14]

[15]

Danny Ho, Software Estimation

Using the COCOMO Model and the

COSTAR Tool, IBM SWS Toronto

Laboratory, Technical Report

74.135, 1994.

Nikki Panlilio-Yap, Software Esti-

mation Using the SLIM Tool, IBM

Canada Ltd. Laboratory, Technical

Report 74.102, 1992.

Nikki Panlilio-Yap and Danny Ho,

"Deploying Software Estimation

Technology and Tools: The IBM
Software Solutions Toronto Lab

Experience," Proceedings of the Ninth
International Forum on COCOMO

and Software Cost Modeling, 1994.

Lawrence H. Putnam, Software Cost

Estimating and Life-Cycle Control."

Getting the Software Numbers, New
York: The Institute of Electrical and

Electronics Engineers, Inc., 1980.

Lawrence H. Putnam, MEASURES

FOR EXCELLENCE Reliable Soft-

ware on Time, within Budget,

Englewood Cliffs: Yourdon Press.,
1992.

Quantitative Software Management,

Inc., SLIM Version 2.2 User

Manual, McLean, 1991.

Quantitative Software Management,
Inc., SLIM Version 3.1 User

Manual, McLean, 1993.

Softstar Systems, COSTAR Version

3.0 User Manual, Amherst, 1990.

SEW Proceedings 219 SEL-94-006

About the Authors

Nikki Panlilio-Yap works in the Software

Engineering Department, Group Technical

Staff, at Loral Federal Systems (formerly

IBM Federal Systems Company) in

Bethesda, Maryland. She is presently on a

leave of absence from the IBM SWS Toronto

Laboratory where she had been part of the

Software Engineering Process Group (SEPG)

since its inception in August 1990. She

joined IBM Canada Ltd. in July 1989 and
worked in Utilities Product Evaluation for

the AS/400* system. Before joining IBM,
she had several years work experience in the

government, academic, and commercial

sectors of the computing industry. She
obtained her Bachelor of Science in Chemical

Engineering from the University of the

Philippines, Master of Arts in Computer
Science from Duke University in Durham,

North Carolina, and Master of Science in

Computer Science from the University of

Maryland at College Park. She was a

Fulbright Scholar and a World Fellowship

recipient of the Delta Kappa Gamma Society

International. She is a member of the Honor

Society of Phi Kappa Phi and the IEEE

Computer Society.

Danny Ho works in the IBM Microelec-

tronics Toronto Laboratory as a team leader

in infrared wireless development. He joined
the IBM SWS Toronto Laboratory in 1989

and worked in the Tools and Technology

Group for four years. His areas of special
interest are software estimation, object-

oriented software development, complexity

analysis, tools delivery mechanisms, and tools

platforms. Prior to joining IBM, Danny
worked as a Software Engineer in the Com-
munications Division of Motorola Canada

Limited and was responsible for the analysis,

design, and implementation of wireline and

radio frequency communication systems and

protocols. Danny received his Honours
Bachelor of Science in Computer Science

with Electrical Engineering and Master of

Science in Computer Science from the Uni-

versity of Western Ontario. He is currently a
member of the Association of Professional

Engineers of Ontario.

SEW Proceedings 220 SEL-94-006

IBM CANADA LTD.
Lessons Learned in Deploying Software Estimation

LessonsLearned in Deploying Software Estimation
Technologyand Tools

November 30, 1994

Nikki Panlilio-Yap and Danny Ho
IBM Canada Limited

Software Solutions Division

Toronto Laboratory
844 Don Mills Road

North York, Ontario M3C 1V7

Canada

Internet: nikki@lfs.lorat.com &

dan ho_torolab2.vnet.ibm.com

IBM SWS Toronto Laboratory November 30, 1994

IBM CANADA LTD.
Lessons Learned in Deploying Software Estimation

AGENDA

• Introduction

• Stages of Deployment

• Level of Deployment

• Key Lessons Learned

• Future Directions

IBM SWSToronto Laboratory November 30, 1994

SEW Proceedings 221 SEL-94-006

IBM CANADA LTD. Lessons Learned in Deploying Software Estimation

DESCRIPTION OF ORGANIZATION

• Sub-businesses:

-- Application Development Technology Center

-- Database Technology

• Number of projects/products: close to 50

• Number of people: approx 1300 (approx 1000 developers)

• Skill Mix: OS/2, AI×, OS/400, VM

• SEI assessment in 1991 revealed a critical need for software

estimation techniques and tools

• Joint effort by Software Engineering Process Group, and

Tools and Technology Group to assess, evaluate, recommend

and deploy

IBM SWS "Toronto Laboratory November 30, 1994

IBM CANADA LTD. Lessons Learned in Deploying Software Estimation

SOFTWARE ESTIMATION

Estimate duration, effort, cost and reliability of software develop-

ment, based on product size

Why is software estimation important?

• Crucial to project schedule and staff/resource allocation

• Uncertainty of project parameters in planning stages

• Cross life-cycle discipline which applies to all phases of soft-

ware development

• Vital to assess parameters at various stages of the project

and re-estimate if necessary

IBM SWS Toronto Laboratory November 30, 1994

SEW Proceedings 222 S EL-94-006

IBM CANADA LTD.
Lessons Learned in Deploying Software Estimation

SOFTWARE ESTIMATION

Why use estimation models?

• Form basis for disciplined planning

• Calibrate to experience

• Allow sensitivity and what-if analysis

• Provide insights in productivity and quality improvement

• Validate bottom-up estimates

Models are not perfect, so use more than one

IBM SWS Toronto Laboratory November 30, 1994

IBM CANADA LTD.
Lessons Learned in Deploying Software Estimation

STAGES OF DEPLOYMENT

Understanding - The Early Stage

Installation - Making the Selected Tools Available

Adoption - Expanding the User Base

IBM SWS Toroflto Laboratory November 30, 1994

SEW Proceedings 223 SEL-94-006

IBM CANADA LTD.
Lessons Learned in Deploying Software Estimation

UNDERSTANDING - THE EARLY STAGE

• Gather preliminary information

-- Literature search

-- Detailed information or demonstration diskette from

vendors

• Obtain trial license

• Conduct pilots

• Perform technical assessment and evaluation

IBM SWS Toronto Laboratory November 30, 1994

IBM CANADA LTD. Lessons Learned in Deploying Software Estimation

INSTALLATION - MAKING THE SELECTED TOOLS AVAILABLE

• Recommend the selected models and tools (SLIM and

COSTAR) based on results of pilot experiments

-- Level of input required

-- Comparison with project actual data
-- User satisfaction

• Demonstrations and technical exchange sessions
-- One-on-one

-- Group
-- Public forum

• Direct project involvement- provide consultation and advise
on:

-- Model and tool usage
-- Tool calibration

IBM SWS Toronto Laboratory November 30, 1994

SEW Proceedings 224 SEL-94-006

IBM CANADA LTD.
Lessons Learned in Deploying Software Estimation

ADOPTION - EXPANDING THE USER BASE

• Broad-based education: two-day course

-- Teach underlying theories

-- Provide in-depth training on the selected tools

-- Provide hands-on experimentation with the tools

• Lab-wide consulting

• Tool and information availability

-- Experience Warehouse

-- Software Lending Library
-- Common LAN

IBM SWS Toronto Laboratory November 30, 1994

IBM CANADA LTD.
Lessons Learned in Deploying Software Estimation

LEVEL OF DEPLOYMENT

• Offered 5 Software Estimation and Tools courses

• Trained over 70 laboratory personnel

• 5 of 7 products submitted for Market-Driven Quality Assess-
ment in 1993 have used estimation models/tools

• Established client contacts within and outside the laboratory

IBM SWS Toronto Laboratory November 30, 1994

SEW Proceedings 2 2 5 S EL-94-006

IBM CANADA LTD. Lessons Learned in Deploying Software Estimation

KEY LESSONS LEARNED

Deploying state-of-the-art technology and tools takes time

Table 1. Time and Effort for Technology Injection

Deployment Stage Time i Effort

i (months) i (PMs)

Understanding 7 7

Installation 12 14

Adoption 18 21

(On-going) (0.2

PM/mo)

IBM SWS Toronto Laboratory November 30. 1994

IBM CANADA LTD. Lessons Learned in Deploying Software Estimation

KEY LESSONS LEARNED

Management commitment is essential

• Need long-term management commitment of time and
resources

Champions must be pro-active and proficient

• Must be in a position to give advice, provide consultation,
and offer assistance

IBM SWS Toronto Laboratory November 30, 1994

SEW Proceedings 22 6 SEL-94-006

IBM CANADA LTD. Lessons Learned in Deploying Software Estimation

KEY LESSONS LEARNED

Easy access to tools and information facilitates deployment

• !_AN facilitates license sharing, tool invocation, tool upgrade
and maintenance

• Online surveys capture valuable tools experience

• Access to tool information, formal tool evaluation results, pilot

results, and user feedback help others in defining strategy

Increasing the laboratory community's awareness promotes
buy-in

• Demonstrations and technical exchange sessions are useful

for introducing new technology and tools

IBM SWS "toronto Laboratory November 30, 1994

IBM CANADA LTD. Lessons Learned in Deploying Software Estimation

KEY LESSONS LEARNED

Broad-based customized education is highly effective

• Create local focal points in the product areas

• Deploy more than one theory and tool

• Tailor course to suit local development environment
• Reduce cost

Collection of historical data is crucial to process improvement

• Improve the quality of subsequent estimation

• Calibrate commercially available tools and tune them to the

development environment

IBM SWS Toronto Laboratory November 30, 1994

SEW Proceedings 2 27 SEL-94-006

IBM CANADA LTD. Lessons Learned in Deploying Software Estimation

KEY LESSONS LEARNED

Understanding how collected data will be used is essential

• Reduce developers" resistance to capturing estimates and
actual values of project parameters

• Help managers identify strong points and bottlenecks

• Help set realistic goals for future projects

IBM SWS Toronto Laboralory November 30, 1994

IBM CANADA LTD.
Lessons Learned in Deploying Software Estimation

FUTURE DIRECTIONS

• User group meetings

-- Update users on latest developments

-- Provide opportunities for exchange of ideas and experi-
ence

• Size estimation and project tracking - new areas to investi-
gate

• Software sizing, estimation, project tracking and management
tools should be integrated

• Tools that truly exploit LAN

-- Client-server computing model

-- Using servers as repository for both data and software

-- Utilize remote LAN data services

• Object-oriented software development - how well do these
models fit?

IBM SWS Toronto Laboratory November 30, 1994

SEW Proceedings 228
SEL-94-006

4--.

Session 5: Reliability and Safety

Using Formal Methods for Requirements Analysis of Critical

Spacecraft Software

Robyn Lutz, Jet Propulsion Laboratory

Experimental Control in Software Reliability Certification

Canuen Trammell, University of Tennessee

Generalized Implementation of Software Safety Policies

John Knight, University of Virginia

SEW Proceedings 229 SEL-94-O06

SEW Proceedings 230
SEL-94-006

N95-31247

/ .7,; <' -) -j

Experience Report: Using Formal Methods for

Requirements Analysis of Critical Spacecraft
Software

Robyn R. Lutz *

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109

November 21, 1994

Yoko Ampo t

NEC Corporation

Tokyo, Japan

Formal specification and analysis of requirements continues to gain support as a method

for producing more reliable software. However, the introduction of formal methods to a large

software project is difficult, due in part to the unfamiliarity of the specification languages

and the lack of graphics. This paper reports results of an investigation into the effectiveness

of formal methods as an aid to the requirements analysis of critical, system-level fault-

protection software on a spacecraft currently under development. Our experience indicates

that formal specification and analysis can enhance the accuracy of the requirements and add

assurance prior to design development in this domain.

The work described here is part of a larger, NASA-funded research project whose purpose

is to use formal-methods techniques to improve the quality of software in space applications

[2]. The demonstration project described here is part of the effort to evaluate experimen-

tally the effectiveness of supplementing traditional engineering approaches to requirements

specification with the more rigorous specification and analysis available with formal methods.

The approach taken in this investigation was to:

1. Select the application domain. The primary criteria were, first, to select portions of the

requirements of an large, embedded software project currently under development, and,

secondly, to select mission-critical software, meaning that its failure could jeopardize

the spacecraft system or mission.

The selected applications were the requirements for portions of the Cassini spacecraft's

system-level fault-protection software. This on-board software autonomously detects

and responds to faults that occur during operations. About 85 pages of documented

requirements describing the software that commands the spacecraft to a known safe

"First author's mailing address is Dept. of Computer Science, Iowa State University, Ames, IA 50011.
tSecond author's mailing address is Space Station Systems Division, NEC Corporation, 4035 Ikebe-cho,

Midori-ku, Yokohama 226, Japan. This work was performed while the author was a visiting researcher at
Jet Propulsion Laboratory, Pasadena, CA 91109.

SEW Proceedings

PRECEDING PA_E BLANK NOT F_i'_
231 SEL-94-006

state and a software executive that manages the fault protection were involved in the

study. System-level fault protection was targeted as a domain which merited the extra

assurance possible with formal specification and analysis.

. Model the selected applications using object-oriented diagrams. The object-oriented

modeling tool used in this work was Paradigm Plus, an implementation of OMT, the

Object Modeling Technique [6] 1. This effort built on earlier work in this research

project in which OMT diagrams were found to be a useful complement to formal

specification in a reverse-engineering application [1]. Our work differs in that we applied

OMT to software currently in the process of being developed, with formal proofs as

well as formal specifications being created.

. Develop formal specifications. The formal specification language used in this study

was that of PVS, the Prototype Verification System [8]. PVS is an integrated environ-

ment for developing and analyzing formal specifications including support tools and a

theorem prover.

o Prove required properties. We determined properties that must hold for the target

software to be hazard-free and function correctly, specified them in PVS as lemmas

(claims), and proved or disproved them using the interactive theorem-prover.

. Feedback results to the Project. Because we were analyzing requirements that were

still being updated, part of our task was to keep current with the changes and to

provide timely feedback to the Project as they resolved the remaining requirements

issues and began design development.

The experiment described here produced 25 pages of PVS specifications and 15 pages of

OMT diagrams. 37 lemmas were specified. Of these, 21 were proven to be true and 3 were

disproven. An additional 13 lemmas were stated but not proven. Five of these unproven

lemmas were obviously true from the formal specifications; four were out of the scope of

our application; and four remain to be proven. The lemmas that were proved were claims

or challenges which must be true if the specifications are accurate and the requirements are

hazard-free.

The lemmas were divided into three categories: requirements-met, safety, and liveness

properties. Requirements-met lemmas traced the documented requirements to the formal

specifications. For example, a documented requirement "If a response can be initiated by

more than one monitor, each monitor shall include an enable/disable mechanism" led to

a lemma demonstrating that the specifications satisfied this requirement. We proved or

disproved 10 such requirements-met lemmas.

Safety properties were "shall-not" claims, which can be stated informally as "nothing

bad ever happens [9]." Examples are, "The software shall not activate any response that

is not requested by a monitor" and "The response shall not change the instrument's status

during a critical sequence of commands." We were able to prove 7 such safety properties,

adding assurance that the software did not introduce hazards into the system.

1Paradigm Plus is a registered trademark of Protosoft, Inc.

SEW Proceedings 232
SEL-94-006

Liveness properties described the positive aspects of the correct behavior of the software:

"something good eventually happens [9]." Examples are, "If a response has the highest

priority among the candidates and does not finish in the current cycle, it will be active in

the next cycle" and "If the response occurs during a non-critical sequence of commands,

then the instrument is turned on." We proved 7 such liveness properties, adding assurance

that no hidden assumptions were required for the software to function correctly.

The results obtained from the specification and analysis (including proofs) of the require-

ments were of two types: issues found in the requirements and an evaluation of the process
itself.

A total of 37 issues were found in the requirements. These were categorized as follows:

Undocumented assumptions: 11. The formalization of the requirements revealed sev-

eral assumptions that were not explicit in the documentation. An example of such an

assumption is, "if the spacecraft is in a critical attitude, then the software is executing

a critical sequence of commands." Frequently, these assumptions involved interface

issues between software modules or subsystems, historically a frequent source of errors

that persist until system testing [4]. In almost every case, the hidden assumption was

currently correct. However, several assumptions merited documentation, especially

since future changes can invalidate current assumptions.

Inadequate requirements for off-nominal or boundary cases: 10. These issues usually

involved unlikely scenarios in which a pre-condition could be false. We often had to

consult spacecraft engineers to know whether such boundary cases were credible. For

example, the case in which several monitors with the same priority level detect faults

in the same cycle was not described. By concretely specifying the possibility of off-

nominal scenarios, the formal analysis can contribute added robustness to the system.

Traceability and inconsistency: 9. These issues included lack of traceability between

the high-level requirements and low-level requirements, as well as inconsistency between

the software requirements and the design of subsystems. Many of these issues were

significant in that they could affect both the logic and the correctness of the formal

specifications. An example is that although the high-level requirements assume that

multiple detections of faults occuring within the response time of the first fault detected

are symptoms of the original fault, the lower-level requirements (correctly) cancel a

lower-priority fault response to handle a higher-priority response.

• Imprecise terminology: 6. These were documentation issues, frequently involving syn-

onyms or related terms. The definition of types in PVS enforced their resolution.

Logical error: 1. The logical error involved the handling of a request for service from a

monitor in the case that a higher-priority request occurred. The question as to whether

such a request could face starvation was first raised during the initial close reading.

The formalization of the issue as a lemma which could be disproven provided insight

and certainty.

The evaluation of the process we used to specify and analyze the requirements led us to
three conclusions:

SEW Proceedings 23 3 SEL-94-006

°

.

Using object-oriented models. For the target applications, object-oriented modeling

offered several advantages as an initial step in developing formal specifications. First,

the object-oriented modeling defined the boundaries and interfaces of the embedded

software applications at the level of abstraction chosen as appropriate by the specifiers.

In addition, the modeling offered a quick way to gain multiple perspectives on the

requirements. Finally, the graphical diagrams served as a frame upon which to base

the subsequent formed specification and guided the steps of its development. Since

the elements of the diagrammatic model often mapped in a straightforward way to

elements of the formal specifications, this reduced the effort involved in producing an

initial formal specification. We also found that the object-oriented models did not

always represent the "why," of the requirements, i.e., the underlying intent or strategy

of the software. In contrast, the formal specification often clearly revealed the intent

of the requirements.

Using formal methods for requirements analysis. Unlike earlier work in this research

project on software in which the requirements were very mature and stable and the

formal specification entailed reverse engineering (Space Shuttle's Jet Select Subsystem),

the work on Cassini's fault-protection subsystem analyzed requirements at a much

earlier phase of development. Consequently, the requirements that we analyzed were

known to be in flux, with several key issues still being worked (e.g., timing details,

number of priority levels). A negative effect of the lack of stability was that time was

spent staying current with changes. A positive effect was that issues identified during

our analysis could be readily fed back into the development process before the design

was frozen.

We were concerned as to whether it was a waste of time to formally specify requirements

while they were still likely to change. Certainly, there was inefficiency in rewriting

specifications to conform to changes that occurred during the experiment. However,

based on our experience with this trial project, the formal specification of unstable

requirements had the following advantages:

• Laid the foundation for future work.

• Allowed rapid review of proposed changes and alternatives.

• Clarified requirements issues still being worked by elevating undocumented con-

cerns to clear, objective dilemmas.

• Complemented the lower-level FMEA (Failure Modes and Effects Analysis) al-

ready being perfomed on the software, by providing higher-level verification of

system properties.

• Added confidence in the adequacy of the requirements that had been analyzed

using formal methods.

Rushby's recent study of formal methods for airborne systems reached the similar but

even stronger conclusion that formal methods can be most effectively applied early in

the lifecycle [7].

SEW Proceedings 234 SEL-94-006

. Using formal methods for safety-critical software. For a safety analysis it is important

to ensure that a hazardous situation does not occur, as well as that the correct behavior

does occur [5]. Fault Tree Analysis, which backtracks from a hazard to its possible

causes, is one method used for this kind of hazards analysis [3]. However, unlike formal

methods of specification and proof, Fault Tree Analysis is an informal method which

in practice permits ambiguous or inadequate descriptions.

Formal methods helped us find hazardous scenarios by forcing us to show every con-

dition and prompting us to define new, undocumented assumptions. The process of

developing formal specifications and proofs led us to think about the full range of cases,

some of which were unanticipated.

In conclusion, one of the goals of the larger research project within which this inves-

tigation was performed is to evaluate the effectiveness and practicality of formal methods

for enhancing the development process and the reliability of the end product. Our main

contributions to this work in the Cassini demonstration project have been:

• Applying formal methods to the software requirements analysis of a project currently

under development,

• Using object-oriented diagrams to guide the formal specification of software require-

ments,

• Formally specifying and proving a set of properties essential for the correct and hazard-

free behavior of the software, and

• Demonstrating that formal methods can be used to specify and analyze an application

involving critical software.

Acknowledgments

Other contributors to the formal methods work at Jet Propulsion Laboratory are Rick Cov-

ington, John Kelly, and Allen Nikora. Ken Abernethy contributed to this work while visiting

JPL. The authors also thank Sarah Gavit and Jan Berkeley for helpful discussions.

The work described in this paper was carried out by the Jet Propulsion Laboratory,

California Institute of Technology, under a contract with the National Aeronautics and

Space Administration.

Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not constitue or imply its endorsement by

the United States Government or the Jet Propulsion Laboratory, California Institute of

Technology.

References

[1] B. H. C. Cheng and B. Auernheimer, "Applying Formal Methods and Object-Oriented

Analysis to Existing Flight Software," Proc 18th Annual Software Eng Workshop 1993,

NASA/Goddard Space Flight Center, SEL, Dec 1993, 274-282.

SEW Proceedings 23 5 SEL-94-006

[2] Formal Methods Demonstration Project for Space Applications, Phase I Case Study: Space

Shuttle Orbit DAP Jet Select, JPL, JSC, and LARC, December 1993.

[3] N. G. Leveson, "Software Safety in Embedded Computer Systems," Commun ACM, 34, 2,

Feb 1991, 35-46.

[4] R. Lutz, "Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems,"
Proc IEEE Internat Syrup on Requirements Eng. IEEE Computer Society Press, 1993, 126-

133.

[5] .NASA Software Safety Standard, NSS 1740.13, Interim, June, 1994.

[6] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Model-

ing and Design. Prentice Hall, 1991.

[7] J. Rushby, Formal Methods and Digital Systems Validation for Airborne Systems, SRI-CSL-

93-07, Nov 1993.

[8] N. Shankar, S. Owre, and J. M. Rushby, The PVS Specification and Verification System, SRI,

March, 1993.

[9] J. M. Wing. "A Specifier's Introduction to Formal Methods," IEEE Computer, 23, 9, Sept

1990, 8-24.

SEW Proceedings 236
SEL-94-006

_mmll Experience Report: Using Formal
Methods For Requirements Analysis
of Critical Spacecraft Software

Robyn R. Lutz

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109

Yoko Ampo

NEC Corporation

Tokyo, Japan

Nineteenth Annual Software Engineering Workshop

December 1, 1994

The work described in this paper was carried out by the Jet Propulsion Laboratory, Callfontia Institute of Technology, undt, r a contract with

the National AerortautJcs and Space Admirtiseration. Reference herein to any specific commercial product, pm¢es$_ or service by trade name,

tradeuk, manufacturer, or othenvis4_, does not constitute or imp]y its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

_J[J[ll Introduction

• Task is part of NASA RTOP to demonstrate

Formal Methods techniques and their

applicability to critical NASA software systems.

(RTOP: Research Technical Objectives and
Plans)

• Formal Methods (FM) refer to the use of

techniques and tools based on formal logic and
mathematics to specify and verify systems,
software, and hardware.

_perle._e F.q_rt
RRL YA

1

SEW Proceedings 237 SEL-94-006

 mom Approach

Step 1: Select Application

>> Criteria: ° Software requirements

• Currently under development

(critical software failure could

jeopardize system or mission)

- Selection: • Requirements for portions of Cassini

spacecraft's system-level fault protection
software

Autonomous detection, isolation, and

recovery from on-board faults required

Exp_ience Repor_

RRL NA

2

CDS Fault Protection

CDS Interfaces to SFP-2

TKB 6/15/94

CDEA

9 9

System

Fault
Protection

1 Telemetry
2 Uplink
3 Time Services
11 Memory Loading

and SSR dual
recording

4&5
CDS Fault
Protection

-I_ CDS
Bus

._ Engineering
Subsystems 1

instruments]
6 State Monitor and Control
7 Commanding
8 S/C Intercommunication RT

Reception
9 S/C Intercommunication RT

Transmission
10 Dual recording ((rom both PSAs to

both SSRs)
CDS Critical Design Review

12-73

SEW Proceedings 238
SEL-94-006

 mlll Approach (continued)

• Safe State Response

>>Mission-phase dependent

>>Commands safe attitude, minimizes power usage,
cancels non-essential activities, reconfigures
hardware

• Fault Recovery Executive

)> Selects which request to service

_>Preemptive priority scheme

_>Special cases complicate requirements

.JlOk
Exp_ie_e Report

RRL _GA

3

CDS Fault Protection

SFP Model (Conceptual)
"CDS"

,f; CDSEXECUT, IME .._i:_i E_

/f CDS SERVICES

//" SFP f SFP MANAGER SFP SEQUENCING MACHIN
' COMPONENT

s=op s_PRESPO.s_s(vM.l IIII

Uplink Command 'prioritization'_ 1 2 3 4 5 .-. 18 II1:1
Handling t

S/C Time SE

Telemetry Interfaces
1o CDS z

SSR Services i

1553B Temp. S_

CFP Control

Disable,,

TKB 6/15/94

Ground and Spacecraft enables
J ,, []

CDS Critical Design Review 12-71

SEW Proceedings 239 SEL-94-006

-JPL CDS System Fault Protection Monitor and Response Tree

 mmB Approach (continued)

• Step 2: Model with Object-Oriented Diagrams

>>Builds on earlier RTOP work [Cheng and
Auernheimer, 93]

_>Object Modeling Technique (OMT) tool [Rumbaugh,
et. al., 91], Paradigm Plus(_) [Protosoft]

• Step 3: Develop formal specifications

>>OMT diagrams guided specification

>>Formal specification language was that of PVS
(Prototype Verification System) [Shanker, Owre,
Rushby, 93]

F_r ienee Rel_rr t

I_L YA

SEW Proceedings 240 SEL-94-006

i Sequence *

Ji--. Probe Subsystem

, H.....s,.,llProb.°.,.,,Slate 1
nabreldisabte Criticality y a 9

_schedule ,/ request _1_ C d I B start _ g

Suspend power off Probej,,P,,,,,,a
- _ I able/disable r Parent | J_-- - _/ _ power on Rep/Hits
_'reteclion I

' _ control reduce Dower

'_ • uest /oot,_....... I/I ,q / ,_=
J i •s,0s,,,,,-- _ _s0,.... ,,,st..... Is

-- - II g Mesponse

i Enab_ _'J _ I CrLticatAt tudeFla_ .-= _---_ Slate _.
=_l= rra(_ = r_uuce powep _j

t i _u_ Jn_emal Request Flag power on Instruments
/ RAec ire Status Emergency OPT FIa B

quest Bit I g I _. power off tnsl Repf Htrs_l
I Request Prlorily _ / _ --

/ set emergency configuraion
enable /

d_sable // configure to sale sla_e
acl_vale

cance_ configure downlink

request

clear request //

command TWTA to operation

set emergency antenna

maximlze downlink signal

emergency ublin:<

S/C S a.[i_g, fJ_.P_ on$ ¢ Qbject Diagram

Fault Protection Mgr Functional Diagram

Requested _- cleared request

cancelled response

/ Responses _ _ P \
sel _'_ --activated &cancelled response : act,vale t _

candidates _ \ new / 1

_ _ _P_ responses / \P.or,_/'_ \ .e.,&o,d,R_I"__j ,_
/ o.°d,d.te. _ ,/ol.r\

new HPQM _=- old HPOM request of
Enabled new HPOM _ " n f letted t

, _.___. - use ec ed responses
.' ='_ new&old _ _\ responses /

Rep _ \'_

___j .e..v.PO_=ol_,Po.

HPOM

1) CAS-3-331 dated Jan.28 says that only cancelled responses have their requests cleared,

SEW Proceedings 241 SEL-94-006

S/C Sating Response Event Trace

i -sto_

I --STOPOT(slop burns}'_• !

x_wer off]

!tSAFE07 go t0 safe attitudei •!

i I I r
configure safe mode_

len.be.____/ "i i! ,
I I power Of

i ! '
establish uplink&c:lownlin k

E ' i i =
i power or= regi htr_; •

I
Monitor Command Fault "NNTA S/C S_querl¢¢ CD$ AAC$ RFS Probe REA

Proteclion RF Saling Subsysgern Repl

Mgr LOSS Response & Htrs&

Response Science RWM

Instruments

_ubsystem

_mffll Approach (continued)

• Step 4: Prove required properties

7>Specify properties in PVS as claims to be proven

>>Prove/disprove claims using interactive theorem
prover

• Step 5: Feedback results to Cassini Project

Lp_i_n_ ReFort

KR/YA

2_

5

SEW Proceedings 242 SEL-94-006

 .lll Results

Experience Report

6

• Summary: 15 pages of OMT diagrams

25 pages of PVS specifications

37 properties specified as claims

• 24 proven/disproven

• 5 true from specifications

• 4 out of scope

• 4 remain to prove

• Two types of results:

_ Issues found in documented requirements

_ Evaluation of process

IIIFBB Results: Issues Found

JPL
Ex p_-fience Report
RRL YA

7

• 3 categories of claims specified and proven

)_ "Requirements-met"

• Demonstrate that formal specifications accurately
represent key requirements

• Example: ``If a response can be initiated by more than
one monitor, each monitor shall include an enable/
disable mechanism."

• 10 proven/disproven, adding assurance that
specifications are correct

>7Safety properties

• "Shall-not" claims that "nothing bad ever happens"
[Wing, 90]

• Example: "The response shall not change the
instrument's status during a critical sequence of
commands."

SEW Proceedings 243 SEL-94-006

 'BS Results: Issues Found (continued)

Expe_ence ReTort
RR/YA

$

>>Safety properties (continued)

• 7 proven, adding assurance that software does not
introduce hazards into system

• Example: "The response shall not change the
instrument's status during a critical sequence of
commands."

>>Liveness properties

• Describe correct behavior:. "something good eventually
happens" [Wing, 90]

• Example: "If a response has the highest priority among
the candidates and does not finish in the current cycle,
it will be active in the next cycle."

• 7 proven/disproven, adding assurance that no hidden
assumptions required for correct behavior

saf: THEORY

% Example below is excerpted from saf theory.

% Spacecraft saflng commands the AACS to homebase mode, thereby
% stopping delta-v's and desacs

BEG:N

aacs mode: TYPE = {homebase, detumble}
attz_ude: TYPE

cdsinternalrequest: VAR bool

crlticalattltude: VAR bool

prev_aacsmode: VAR aacsmode

aacs_stop_fnc (critical attitude, cds internal request, prey aacs mode):aacs mode . - - - - -
IF c_i=ical attitude

THEN IF _ds internal request

THEN prey aacs mode

ELSE homebase -
ENDIT

ELSE homebase

ENDIF

% Lemma asserts that if Spacecraft Safing is requested via a CDS internal

% request while the spacecraft is in a critical attitude, then no change is
% commanded to the AACS. Otherwise, the AACS is commanded to homebase.

aacs_saflng_reqmet_l: LEMMA

(crl:acal_a_titude AND cds_internal request)

OR (aacs stop fnc(critioal attltude7 cds internal request, prev aacsmode)= homebase) -- -- --

END saf

SEW Proceedings 244
SEL-94-006

 illl Results: Issues Found (continued)

.JILL
Experience Report

RRL, YA

9

37 issues found:

>>Undocumented assumptions: 11

• Example: "If the spacecraft is in a critical attitude, then
the software is executing a critical sequence of
commands."

• Frequently involved interface issues, historically a
source of errors that persist until integration and
system testing [Lutz, 93]

• Assumptions almost always currently correct, but

future design changes could invalidate them.

>> Inadequate requirements for off-nominal or boundary
cases: 10

• Example: Requirements for case in which several
monitors with same priority level detect faults in same
cycle were not described

 MJFli Results: Issues Found (continued)

>>Inadequate requirements for off-nominal or boundary

cases (continued)

• Involved unlikely scenarios in which pre-condition
could be false

• Concretely specifying possible cases builds in
robustness

>>Traceability and inconsistency: 9

• Example: High-level requirements assume that
detected faults occurring during response time of initial

fault are symptoms of initial fault; low-level
requirements (correctly) cancel lower-priority response

• Formal specification forced resolution of discrepancies

Expe1"ience Report

RRI., YA

10

SEW Proceedings 245 S EL-94-006

_'8$1 Results: Issues Found (continued)

_ Imprecise terminology: 6

• Example: "Stop" and "cancel" sometimes synonymous;
sometimes not

• Automatic type checking enforced precision

_ Logical error: 1

• Example: can a request for service face starvation due
to higher-priority requests?

• Formalizing question as lemma which could be
disproven provided insight and certainty

.JILL
Ex Iv,_'Tience Report
RIXL, YA

_7_94

11

_MiFB Results: Process Evaluation

RI_.L, YA

12

• Benefits of combining Object-Oriented Models
and Formal Methods

_>Frames the problem

_>Basis for technical discussion

_>Road map

• Mapping of elements
• Reduced effort

_ Complementary roles

• OMT: informal

multiple perspectives
communicates key elements

• PVS: formal

unambiguous specification
analysis of completeness

SEW Proceedings 246 SEL-94-006

imlll Results: Process Evaluation
(continued)

>>OO model did not represent the "why" of the

requirements (underlying intent or strategy) as clearly
as the formal specifications

• Using Formal Methods for requirements
analysis

>>Requirements were not yet stable

)>Waste of time to formally specify?

• Time consuming to stay current

• Interactive process

.Jill
Experience Repor_

RRI. YA

23

imlll Results: Process Evaluation
(continued)

.EOL
E.xperiea_eRe1_ort
RRI_ YA

14

>>Advantages of formal specification of unstable
requirements

• Laid foundation

• Rapid review of proposed changes

• Clarified issues being worked: undocumented
concerns elevated to clear, objective dilemmas

• Complemented lower-level FMEAs (Failure Modes and
Effects Analyses)

• Added confidence in adequacy of requirements
analyzed using formal methods

• Issues identified fed back and resolved early in
development

SEW Proceedings 247 SEL-94-006

 |11! Results: Process Evaluation

(continued)

Using Formal Methods for safety-critical
software

_>FM helped find hazardous situations

>) Forced analysis of full range of cases, some
unanticipated

>>Prompted definition of undocumented assumptions,
some of which are not always true

>>Proofs of safety properties ensured that some unsafe
states do not occur

.nok
_perirnce Report
RRL, YA

15

 '011 Conclusion

• Contributions of this work:

>) Applied FM to software requirements of project
currently in development

)> Used object-oriented diagrams to guide formal
specifications of requirements

)) Formally specified and proved some properties
essential for correct and hazard-free behavior

>_Demonstrated use of FM in safety-critical application

.JILL
Expen_.moe Report

RRL, YA

16

SEW Proceedings 248
SEL-94-006

N95- 31248

EXPERIMENTAL CONTROL IN SOFTWARE RELIABILITY CERTIFICATION

Carmen J. Trammell and Jesse H. Poore

Software Quality Research Laboratory
University of Tennessee

J

There is growing interest in
software "certification," i.e., confirmation

that software has performed satisfactorily
under a defined certification protocol.
Regulatory agencies, customers, and
prospective reusers all want assurance that
a deemed product standard has been met.

In other industries, products are
typically certified under protocols in which
random samples of the product are drawn,
tests characteristic of operational use are
applied, analytical or statistical inferences

are made, and products meeting a standard
are "certified" as fit for use. A warranty
statement is often issued upon satisfactory
completion of a certification protocol.

The statistical principles that
underlie such product protocols have long
been advocated by Mills and colleagues
[1,2,3,4] and Musa and colleagues [5,6,7]

as the basis for software reliability
certification. The terminology used by
Mills and Musa differs slightly, but their
ideas are similarly drawn from scientific
approaches to product certification in
mature engineering disciplines. The
terminology of Mills will be used in this
paper.

"Statistical testing" was conceived
by Mills and has been advanced by his
colleagues at IBM, Software Engineering
Technology Inc., and the University of
Tennessee. In statistical testing,

(1) expected operational use is represented
in a usage model of the software,

(2) test cases are randomly generated from
the usage model,

(3) test cases are executed in an
environment that simulates the

operational environment, and

(4) failure data are interpreted according to
mathematical and statistical models.

Methods for the construction of usage
models (8,9) and the interpretation of
failure data (10) have been given. Usage
models are developed before testing, and
interpretation of failure data occurs after
testing. Proper experimental control during
testing is critical to the integrity of the
protocol, however, and has not previously
been addressed.

This paper outlines specific
engineering practices that must be used to

preserve the validity of the statistical
certification testing protocol. The
assumptions associated with a statistical
experiment are given, and their implications
for statistical testing of software are
described. The ideas in this paper have
evolved from experience xn fifteen
Cleanroom projects conducted in the
Software Quality Research Laboratory at
the University of Tennessee.

The Slippery Slope

It was a typical day in the testing
phase of a software development project at
ACME Software.

Jane had been testing for hours, and her
mind was drifting. She took a break.
When she returned and ran the next test

case, she noticed something unexpected,
but she knew this unexpected event had to
have been happening all along. She
realized she had been too tired to observe it

when it first occurred. She didn't know
when it had first shown up.

John and Mar)/" were both running test
cases. John saw a screen event and

SEW Proceedings 249 SEL-94-006

thought it was expected behavior. Mary
saw the same event and recorded it as

unexpected behavior.

Joe suddenly realized that there was an
error in his part of the code, and he was
anxious to fix it. He waited until testers
had stopped for the day, made the change,
and recompiled. The testers would
continue their work the next day using his
new version. He knew he had made the

change and recompiled properly, so there
was no need to bother the test team about
this.

Michael looked over the stack of test cases
and saw that they varied greatly in length.
He knew that they had been randomly
generatea_ so he assumed that they were all
equally usable test cases. He rifled through
the stack and picked the shortest ones so he
could run the most cases in the least time.

Deborah was a new hire assigned to take
the place of a certification engineer who left
the company abruptly. She worked with
the experienced engineer for a day, and
then started testing on her own. She
couldn't really read the spec to check the
details of correct output, so she decided to
just use her best judgment and not bother
the others unless she was really confused.

Bill had an extremely long test case. In the
middle of the test case, the prescribed
events led him back to the Main Menu.

Ordinarily, a test case would end at this
point, but this case called for a second
major scenario. Bill decided the case was
unreasonably long, and counted the second
major scenario as a new test case.

These very common events are
threats to the integrity of a statistical

approach to software testing. Statistical
software testing, as a scientific endeavor in
the real world, inevitably requires some
compromises in methodological purity, and
it is important to understand the nature of
the slippery slope. The assumptions
underlying a statistical experiment must be

understood, the practical threats to
experimental integrity must be recognized,
and a strategy for experimental control must
be employed.

Software Testing as a Statistical
Experiment

In statistical certification testing,
software testing is viewed as a statistical
experiment. A subset of all possible uses
of the software is generated, and
performance on the subset is used as a
basis for conclusions about general
operational reliability. In standard
experimental parlance, a "sample" is used
to draw conclusions about a "population."
Figure 1 shows the parallel between a
classical statistical experiment and statistical
software testing. Under a testing protocol
that is faithful to the principles of applied
statistics, a scientifically valid statement can
be made about the expected operational
performance of the software based on its

test performance.

The premise that must be accepted
as a starting point in this analogy is that it is
not possible to test all ways in which
software may be used. This is apparently
not a premise that can be assumed as
obvious. In a discussion of software

testing with the top software manager in a
large aerospace corporation, the
infeasibility of testing all possible usage
scenarios was cited as the motivation for

statistical testing. "But we have to test
every possible use of the software," he
said. "The kind of software we develop
could cause deaths if it is not tested

completely."

Software with an unbounded input
sequence length has a theoretically infinite
number of possible usage scenarios. For
software with only two user inputs, A and
B, the possible scenarios of use are A, B,
AA, AB, BB, BA, AAA, AAB, ABA,
BAA, and so on. Software with a bounded

but large input sequence length has a finite

2

SEW Proceedings 250
SEL-94-O06

Statistical Experiment

co_rrect [] valid

sele _ lization

Statistical Software Testing

generation of [conclusions from

test cases [testing to field
I

@
Figure 1. Software Testing as a Statistical Experiment

but astronomical number of possible usage
scenarios.

The functional testing community
measures test coverage in terms of function

coverage. But testing every function is not
the same as testing every combination of
functions. And testing every combination
of functions is not the same as testing every

possible sequence of functions.

The structural testing community
measures test coverage in terms of code

coverage. But testing every line of code is
not the same as testing every path. And
testing every path is not the same as testing
every possible sequence of paths.

There is really no question about
whether all possible scenarios of use will
be tested. They will not. The only
questions are how the population of uses
will be characterized, and how a subset of
test cases will be drawn. A random sample

of test cases from a properly characterized

population, if applied to the software with
proper experimental control, will allow
scientific generalization of conclusions
from testing to operational use. Any other
set of test cases, no matter how

thoughtfully constructed, will not.

Assumptions in a Statistical
Experiment

In a statistical experiment, a well-
defined procedure is performed under
specified conditions, and produces one of
two or more possible outcomes. Each
performance of the procedure is called a
"trial" of the experiment. The outcome data
from successive trials of the experiment can
be used to estimate the probability of each
of the outcomes. Figure 2 portrays the
general structure of a statistical experiment.

Several assumptions underlie the
validity of inferences from a statistical

SEW Proceedings 2 51 SEL-94-006

Theoretical View
(the undoable and

unknowable)

Population

The true occurrence

rate of outcomes in the
population...

Practical View
(the experiment)

Random Sample

...can be estimated

from the observed
occurrence rate of
outcomes in a sample

Figure 2. Structure of a Statistical Experiment

experiment, however. The assumptions are
as follows.

(1) Each trial is performed under the same
conditions.

(2) There is one outcome per trial.

(3) All outcomes are possible in each trial.

(4) Trials are independent.

The implications of these assumptions
for the testing protocol must be understood.
Proper experimental control in statistical
certification testing is essential to the
validity of the claims that result.

Meeting the Assumptions of a
Statistical Experiment in Statistical
Testing of Software

In statistical testing, a wial is ordinarily
considered to be a test case. A test case

generated from the usage model is a
complete usage scenario beginning with
some appropriate initial event (e.g.,
invocation, switchhook up, power on) and
ending with some appropriate final event
(e.g., termination, switchhook down,
power off). Other definitions of a trial are
possible, however, such as a single
transaction or some other set of
transactions. The certifier defines a trial in

a manner that is appropriate for the
application, and must do so in conjunction
with the form of generalization the certifier
wants to make about the population.

A statistical test case results in one

outcome from a specified set of possible
outcomes. The possible outcomes of a test
case, for example, may be defined as
{success, failure}. Under another design,
the possible outcomes might be {success,
cosmetic failure, serious nonblocking
failure, blocking failure, crash}. Another
design still may entail outcomes of {0
failures, 1 failure, 2 failures 10 or more

4

SEW Proceedings 252 S EL-94-006

failures }. The challenges in experimental
control grow with the complexity of the
design since more granular judgments are
required.

Regardless of the design of the
statistical experiment---i.e., the definition
of a trial and the specified set of possible
outcomes---the foregoing assumptions
about a statistical experiment must be met in
the way trials are conducted and evaluated.

The implications of each of the
foregoing assumptions is considered next.
In the following discussion, a trial will be
regarded as a test case that has been

randomly generated from the usage model,
and the possible outcomes of the test case
will be regarded as success and failure.

Assumption 1: Each trial is performed
under the same conditions.

What "conditions" are relevant to the
conduct of a test case? The entities
associated with a test case are, at a
minimum,

° the software,

• the input,

• the system environment,

the basis for evaluation of
performance, and

• the tester (human or automated).

The software and the basis for evaluation of

performance are entities that can be held
constant; the input, the system environment
and the tester are not amenable to complete
control.

Software. The software used in

testing will not change unless it is
deliberately modified and recompiled. If it
is changed in any way, the statistical
experiment must begin anew. One may not

amass data over several versions of

software and treat them as a simple
statistical experiment. Such data may be
applied to reliability growth models that
predict growth as a function of performance
history and changes in the software, but
may not be used to estimate parameters of a
specific version of the software. Testing of
each version of the software is a separate
statistical experiment.

Input. To the extent that input varies
with classes of usage---e.g., novice vs.
expert, literary vs. mathematical subject
matter, new vs. mature database---separate
statistical experiments may be desirable.
Otherwise, input (regardless of its origin in
the system under test or another source)

may be directly incorporated in the usage
model structure and randomized via the

usage probability distribution (e.g.,
percentage access of short and long files).
The latter strategy effectively removes input
from the set of conditions to which

Assumption 1 applies by making it part of
the trial rather than part of the background.
This strategy also eliminates the distortion
that could result from tester bias toward the

shortest test cases, the "'easiest" ones, the

most subjectively interesting ones, etc.

System Environment. The system
environment is perhaps the most illusive of
the conditions to be controlled. Variability
of background will be a feature of the real
operational environment, however, so the
experimental task is to simulate a test
environment with variability that is typical
of the actual environment. Concurrent

activity, system load, interrupt schedules,
etc., make for a constantly changing
background. Again, key variables may be
directly incorporated in the usage model
structure and randomized via the usage
probability distribution.

Basis for Evaluation. The basis for
evaluation of a test case may be the
specification, an independent "oracle," or
both. It is not uncommon for a

specification to change at any stage of

5

SEW Proceedings 253 SEL-94-006

development, including testing. Consistent
evaluation criteria must be applied within a

testing experiment, however. Behavior that
is regarded as correct (or incorrect) in one
test case must be evaluated the same way in

any other test case applied to that version of
the software.

Tester. A given human tester may
vary in the way he or she conducts and
evaluates test cases, and the performance of

any two testers may vary. Training,
alertness, motivation, perception, and any
number of other variables may affect the

performance of human testers. While
complete control over these factors is
impossible, most of the variability can be
eliminated through

coordination of all test activities by a
chief certification engineer,

• thorough tester training,

explicit policies about test materials,
session length, and data collection,

documented guidance about issues on
which the "test script" is not explicit,

periodic "recalibration" of testers
through paired performance of test
cases with the chief certification

engineer, and

timely communication among testing
team members with regard to
observations and decisions that may

affect test judgment.

Assumption 2: There is one outcome per
trial

If the specified set of outcomes (i.e.,
elementary events) is {success, failure},
then the outcome of a test case is either one

success or one failure; it is not both, not
two successes, and not two (or more)

failures. A success is a test case in which
the software performs correctly on all

inputs in the test case; otherwise, the test
case is counted as a failure.

In the strictest sense, then, counting of
successes and failures is a simple matter.
The number of successes plus the number

of failures equals the number of test cases
IMn.

The implication of one-outcome-per-
trial is that a test case must be counted as a

failure as soon as a failure on any input
occurs. This is an unpopular policy,
however, because a minor but unavoidable
failure that occurs early in every test case
will drive the measured reliability of the
version to zero even though the software
does most everything correctly.

An organization using statistical
certification testing must develop a testing

policy that accommodates the assumption
of one-outcome-per-trial, yet allows testing
to proceed in the presence of minor
failures. Policy options may be politically
difficult (e.g., counting every failure, with
the result that status reports show declining
reliability) or scientifically suspect (e.g.,
not counting recurrences of a failure, such
that a correct fix and independence of
failures must be assumed). Policies each
have their advantages and disadvantages.

A reasoned policy must be reached and
used, however, so that the implications for

the integrity of the statistical experiment are
understood.

Assumption 3: All outcomes are possible in
each trial.

All possible scenarios of usage must
be candidates for selection in each trial,

such that all the ways the software could
succeed and all the ways it could fail are

potentially observable.

In addition, this assumption implies

that testing must not proceed in the
presence of "blocking" failures. If an input
is unreachable due to a blocking failure that

SEW Proceedings 254
SEL-94-006

is "not counted" upon recurrence, then
success or failure that would result from the

input cannot be observed. The detection of
a blocking failure is grounds for stopping

the testing process and creating a new
version of the software.

Assumption 4: Trials are independent.

Trials are independent if the outcome
of one trial has absolutely no connection
with the probability of the outcome of any
subsequent trial. For software, trials (i.e.,
test cases) are independent if the success or
failure of one test case has no bearing on
the success or failure of any subsequent test
case.

It may be argued that this assumption
cannot be met since programs build up state
information over successive runs. Since

state data is the encapsulation of input
history, the input in one trial may result in a
change in state, and the new state may
increase the probability of exposing a
program defect---i.e., producing a failure---
in a subsequent trial.

The only certain way to avoid

dependency between failures is to fix each
fault and corresponding state data after a
failure, and restart testing with the new
version of the software.

Alternatively, it may be possible to
either avoid or randomize state data. Two

types of state information exist: internal
variables and external files. Internal
variables exist for the duration of an
execution. A test case that ends in

termination, therefore, will not carry over
internal state data to the next run. External

files persist from one execution to the next,
of course, but it is often not necessary to

use them in sequential runs; their use may
be randomized. Test cases of word

processing software, for example, may
randomly access one of a number of files
(e.g., no file; short and long files; narrative
and equation-filled files; etc.) according to
an expected usage distribution.

Regression testing is a common
violation of the assumption of independent

trials. If previously used test cases are run
on a new version of the software, they
should not be counted as new trials.

Independence of trials in statistical
software testing is defensible, but requires
a deliberate strategy---either fixing failures
as they are found, avoiding the carryover of
state data, or randomizing state data

according to an expected usage distribution.

The Slippery Slope Revisited

ACME Software improved control
over its software testing process by
establishing a documented testing protocol
and training the project team. Things were
ch'fferent in the next project.

Before testing began, the testing team
reviewed the specification, the test script,
and other reference materials in detail. The
group executed the first several test cases

together, with each person taking a turn as
the tester. The group reconvened at several
points in testing for brief "recalibration"
sessions. John and Mary's evaluations of
test cases were much more consistent this

time.

As prescribed by the protocol, Jane took a
short break after each testing hour to review
her annotations on the test script, update the

chief certification engineer on her progress,
and confer with other testers. She was
much more alert and attentive to detail as a
result.

Joe now understood that the product

reliability claim would only be valid if
engineering changes were made in a
controlled way. Everyone understood that
any deviation from the protocol was to be
discussed by the team so that the impact on
the integrity of the testing process could be
determined

7

SEW Proceedings 2 55 SEL-94-006

Michael and Bill both now understood the

"selection bias" that could result from
picking and choosing among test cases, •
subdividing test cases, or otherwise altering
the randomly generated sample of test
cases. They now executed test cases in the
order in which the test cases were •

generated

Testers recorded all choices and

observations as notes on the test script. •
Anyone with points of uncertainty---such
as new hires---could later go over the
specifics with the chief certification
engineer to ensure the correctness of •
evaluations.

The Engineering Practice of
Statistical Reliability Certification

If test team members are aware of the

threats to experimental integrity, they can •
approach the innumerable decisions that
must be made during testing with an eye
toward preserving the validity of results.
Recommendations for control over the •

testing process in the foregoing discussion
are summarized here.

Test Preparation

Define a test case as a usage scenario
that is a longer period than the
software can retain internal state data

(e.g., invocation-to-termination).

Randomize external state data via the

usage probability distribution.

Define the system environment(s), and
either establish different usage models
for different environments or sustain

the conditions in a given environment
throughout testing.

Train test staff to ensure a common

understanding of all test materials and
policies, and monitor performance to
prevent "drift."

Test Case Execution and Evaluation

Hold the specification and independent
oracle constant for each version of the
software that is tested.

Assign each test case one outcome
from the specified set of possible
outcomes.

Run test cases in the order in which

they are generated. Do not pick and
choose.

If previously used test cases are rerun
on a new version, they should be
performed for peace-of-mind only and
not counted as new random trials.

If a "blocking" failure occurs, stop and
create a new version.

If a failure occurs which could

conceivably cause a subsequent
failure, stop and create a new version.

Schedule regular communication
between test team members for

discussion of matters that may affect
test judgment.

Surviving the Compromises of
Everyday Practice

A sound testing strategy may be
compromised in practice if the rationale for
the strategy is not well understood, is not
embodied in a documented process, or is
not practiced as documented. Indeed, "the
difference between theory and practice in
practice is greater than the difference
between theory and practice in theory."

The threats to validity in certification
testing can largely be controlled through
understanding the assumptions in a
statistical experiment, establishing explicit
policies to meet them, and monitoring
adherence to the policies in practice. Such
experimental control is necessary to sound

SEW Proceedings 256
SEL-94-006

footing on the slippery slope of applied
science.

References

1. Currit, P. Allen, Michael Dyer, and
Harlan D. Mills. "Certifying the Reliability
of Software." IEEE Transactions on

Software Engineering, Vol. SE-12, No. 1,
January 1986.

2. Mills, H. D., M. Dyer, and R. C.
Linger. "Cleanroom Software
Engineering." IEEE Software, September,
1987, pp. 19-24.

3. Mills, H. D. and J. H. Poore.

"Bringing Software Under Statistical
Quality Control." Quality Progress,
November 1988.

4. Cobb, R. H. and H. D. Mills.

"Engineering Software Under Statistical
Quality Control." IEEE Software,
November 1990.

5. Musa, J.D., A. Iannino, and K.

Okumoto. Sofl;war¢ Reliability:
Mea_;urement, Prediction, Application.
McGraw-Hill: New York, 1987.

6. Musa, J.D. and William W. Everett.

"Software-Reliability Engineering:
Technology for the 1990s." IEEE
Software, November 1990.

7. Musa, John D. "Operational Profiles in
Software-Reliability Engineering." IEEE
Software, March 1993.

8. Whittaker, James A. and J.H. Poore.

"Markov Analysis of Software
Specifications." Transactions on Software
Engineering and Methodology, January
1993.

9. Walton, Gwendolyn H., J.H. Poore
and Carmen J. Trammell. "Software

Usage Modeling." Software Practice and
Experience, to appear.

10. Poore, J. H., Harlan D. Mills, and

David Mutchler. "Planning and Certifying
Software System Reliability." IEEE
Software, January 1993.

SEW Proceedings 257 S EL-94-006

EXPERIMENTAL CONTROL IN

SOFTWARE RELIABILITY CERTIFICATION

17th Annual Software Engineering Workshop

NASA/Goddard Space Flight Center

Carmen Trammell

University of Tennessee

UNIV. OF TENN. SOFTWARE ENGINEERING FOCUS:

ADVANCES IN CLEANROOM PRACTICE

• Software Quality Research Laboratory

• Fifteen Cleanroom projects since 1988

• Student employees, high turnover

• Statistical testing (Mills and Musa) is used

SEW Proceedings 258
SEL-94-006

SOFTWARE TESTING AS A

STATISTICAL EXPERIMENT

Statistical Experiment

__/y

Software Testing

_tiOgenerationo.f l [conclusions fT6°fm

test c_s_ng to field

SYMPTOMS OF POOR TESTING PROCESS CONTROL

• Delayed observation of failures

• Conflicting evaluations by testers

• Picking and choosing among test cases

• Unauthorized engineering changes

• Lack of communication by new testers

SEW Proceedings 259 SEL-94-006

STRUCTURE OF A STATISTICAL EXPERIMENT

Theoretical View

(the undoable Population

and unknowable_/_,,_k,^ ,_;_,_ _ _ T;etrurr_encerate

............... _ outcomes o! alluaals)ofoutcomes,in

_ _ the population.

Practical View

(the experiment) Random Sample

@-@
...can be

estimated from
the observed

occurrence rate

of outcomes in a

sample

ASSUMPTIONS IN A STATISTICAL EXPERIMENT

(1) Each trial is performed under the same conditions.

(2) There is one outcome per trial.

(3) All outcomes are possible in each trial.

(4) Trials are independent.

SEW Proceedings 260 SEL-94-006

ASSUMPTION (1)

Each trial is performed under the same conditions.

• the software

• the input

• the system environment

• the basis for evaluation of performance

• the tester (human or automated)

ASSUMPTION (2)

There is one outcome per trial.

the set of possible outcomes must be specified, e.g.,
- { success, failure}

- {no failures, minor failure, serious failure, crash}
- {0 failures, 1 failure, ...n or more failures}

recurrences of failures: to count or not to count?
counting recurrences results in reports of declining reliability

- not counting recurrences requires judgments about independence of failures

SEW Proceedings 2 61 SEL-94-006

ASSUMPTION (3)

All outcomes are possible in each trial.

all usage scenarios must be candidates for selection in
each trial

the outcome of each scenario must be observable...

testing cannot proceed in the presence of blocking
failures

ASSUMPTION (4)

Trials are independent.

• test cases must exceed the retention of internal state data

• external state data should be randomized

• regression tests must not be counted as new random trials

SEW Proceedings 262 SEL-94-006

LESSONS LEARNED ARE EMBODIED IN

THE CURRENT PROTOCOL

Test Preparation

• Define a test case as a usage scenario that is a longer period

than the software can retain internal state data (e.g.,
invocation-to-termination).

• Randomize external state data via the usage probability
distribution.

• Define the system environment(s), and either establish different
usage models for different environments or sustain the conditions

in a given environment throughout testing.

• Train test staff to ensure a common understanding of all test

materials and policies, and monitor performance to prevent
"drift."

LESSONS LEARNED ARE EMBODIED IN

THE CURRENT PROTOCOL

Test Case Execution and Evaluation

• Run test cases in the order in which they are generated.

• Hold the specification and oracle constant for each version

• Assign each test case one outcome from the set of possible
outcomes.

• If test cases are rerun, do not count them as new trials.

• If a "blocking" failure occurs, stop and create a new version.
If an observed failure could cause a subsequent failure, stop and
create a new version.

• Schedule regular communication for discussion of matters that

may affect test judgment

SEW Proceedings 263 SEL-94-006

SEW Proceedings 264 SEL-94-006

N95- 31249

/ ,,..J _ /
/

GENERALIZED IMPLEMENTATION

OF

SOFTWARE SAFETY POLICIES t

John C. Knight

knight @ virginia, edu

Kevin G. Wika

wika @ virginia, edu

Department of Computer Science

University of Virginia

Charlottesville, VA 22903

(804) 924-7605

An Abstract Submitted to:

Nineteenth Annual Software Engineering Workshop

Software Engineering Laboratory

Goddard Space Flight Center

Greenbelt, MD

t. Supported in part by the National Science Foundation under grant number CCR-9213427 and in
part by NASA under grant number NAGI-1123-FDR

SEW Proceedings

PRECEDING PA(_E E_.,o.I'_;_i'_O'r _=_,:_._:;i:.:':

265
SEL-94-O06

Generalized Implementation of Software Safety Policies
'l

Introduction

As part of a research program in the engineering of software for safety-critical sys-

tems, we are performing two case studies. The first case study, which is well underway, is

a safety-critical medical application. The second, which is just starting, is a digital control

system for a nuclear research reactor. Our goal is to use these case studies to permit us to

obtain a better understanding of the issues facing developers of safety-critical systems, and

to provide a vehicle for the assessment of research ideas.

The case studies are not based on the analysis of existing software development by

others. Instead, we are attempting to create software for new and novel systems in a process

that ultimately will involve all phases of the software lifecycle. In this abstract, we summa-

rize our results to date in a small part of this project, namely the determination and classi-

fication of policies related to software safety that must be enforced to ensure safe operation.

We hypothesize that this classification will permit a general approach to the implementation

of a policy enforcement mechanism.

The Problem

The functionality demanded by modern applications, including safety-critical

applications, frequently leads to software that is very large and complex. Functionality

requirements have increased because of the many benefits of computer-based control and

the availability of inexpensive yet powerful computing hardware. Hardware performance

limits that formerly restricted software complexity are rarely reached because of the

remarkable hardware performance now available.

Unfortunately, significant software defects tend to remain in such systems after

deployment despite extensive effort on the part of the developers [2,6]. Building these sys-

tems to perform as desired is very difficult for a number of reasons. Even the best software

development processes cannot ensure that faults are avoided completely during develop-

ment. Similarly, fault detection techniques are imperfect. Research has shown, for example,

that testing as an approach to verification cannot demonstrate sufficient levels of depend-

ability because of the sheer number of tests that are required [1].

Even building very small, simple software systems that achieve the extreme

dependability necessary for safety-critical applications has proven to be very challenging.

Formal techniques have made substantial progress and have been applied to real systems

in a number of cases, but their application to large, complex systems remains mostly

impractical. The complexity of large systems involving characteristics such as real-time

operation and distributed processing is likely to preclude any significant assurance that the

systems meet desired dependability goals if traditional techniques are used in traditional

ways.

A central question that arises is how to deal with a software system that is on the

one hand safety critical and on the other hand large and complex, i.e., so large and complex

as to preclude a complete attack on the problem of showing dependability using even the

best available techniques. We outline an approach to this problem that we are pursuing in
the next section.

SEW Proceedings 266 SEL-94-006

Generalized Implementation of Software Safety Policies

Technical Approach

An approach that has been tried in many safety-critical systems is to isolate the

problem of ensuring safe operation so that a small part of the software, often termed a ker-

nel, is responsible. This is the approach we are following but we are attempting to develop

a general, comprehensive approach to the problem by exploiting an analogy with security
kernels.

Security kernels are used to enforce access-control policies in classified information

systems. The idea of trying to exploit this technique to implement safety rather than secu-

rity, i.e., the concept of a more general safety kernel, was proposed by Rushby [5,7], among

others. The idea that Rushby suggested is different from other architectures described as

safety kernels because certain essential safety policies are enforced regardless of the

actions of the application software. This is in direct analogy with security kernels that

enforce access control with a similar degree of generality. Other safety-kernel architectures

that have been developed tend to provide a set of services that enforce required safety pol-

icies, if used appropriately by the application. This is a critical distinction.

The safety-kernel idea is of value if it is able to enforce a suitably large subset of

the required safety policies. A major benefit would be gained if this safety-kernel approach

could be implemented in a reusable manner, i.e., in such a way that the same safety kernel

implementation could be used in a variety of applications. To evaluate the safety-kernel

idea, assess its utility, and try to get some insight into generality that might be possible in

an implementation we have analyzed the two case studies at our disposal. We report our
results in the next section.

Empirical Results

We began this study by identifying the safety policies required by each application.

We then examined the two sets to ascertain whether general classes of policies existed and

whether the policies were similar in the two cases after application-dependent parameters

were removed. We begin this section by summarizing the important details of the two appli-

cations and list examples of the safety policies they require. We then discuss the resulting

structure of the policies and its implication on implementation and generality.

Magnetic Stereotaxis System

The first case study that we are engaged in is the Magnetic Stereotaxis System

(MSS). This is an investigational device for performing human neurosurgery being devel-

oped in a joint effort between the Department of Physics at the University of Virginia and

the Department of Neurosurgery at the University of Iowa [3,4]. The device operates by

manipulating a small permanent magnet (known as a "seed") within the brain using an

externally applied magnetic field. The patient is positioned at the center of six supercon-

ducting electromagnets. Under the direction of the computer, power supplies and current

controllers regulate the electric current in the electromagnets thereby producing the mag-

netic field that acts on the seed. Along each axis perpendicular to the patient's body, an X-

Ray source and camera produce fluoroscopic images for tracking the seed. By varying the

magnitude and gradient of the external field, the seed can be moved along a non-linear path

and positioned at a site requiring therapy, e.g., a tumor.

SEW Proceedings 267 S EL-94-006

Generalized Implementation of Software Safety Policies

When the MSS is in operation, there are a large number of events that could lead to

patient injury. The complete set is determined by a hazard analysis including the use of

techniques such as system fault-tree analysis. Events that could lead to patient injury

include failure of current controllers, X-Ray overdose, incorrect calculation of currents for

a seed movement, and failure to respond promptly to an increase in seed velocity. Each of

these could be the result of numerous different faults, and, in fact, the software could either

initiate or prevent many of these failures. Such failures can be prevented irrespective of

their cause and irrespective of the state of the equipment if safety policies such as the fol-

lowing (stated here informally) are enforced:

• If the seed moves faster than 2.0 mm/sec, the coil currents must be set to zero.

• If the vision system cannot locate the seed while it is being moved, the coil cur-
rents must be set to zero.

similar

• The currents must be within 5.0 A of the value predicted by the coil control model.

• The current requested of a controller must be in the range -100 A to +100 A.

• Before moving the seed, a reversal check must be executed to ensure that the

requested currents provide the desired direction within 5 degrees.

• An X-Ray device must be "off" for 0.2 sec before an "on" command is executed.

• The total X-Ray dose during an operation must be less than 100 millirem.

In the MSS system, a total of 42 safety policies have been identified. They are all

in complexity and breadth to these examples.

University of Virginia Reactor

The target of the second case study is the nuclear research reactor currently operated

by the University of Virginia. It is a 2 MW thermal, concrete-walled pool reactor. It was

originally constructed in 1959 as a 1 MW system, and it was upgraded to 2 MW in 1973.

Though only a research reactor rather than a power reactor, the issues raised are significant

and can be related easily to the problems faced by full-scale reactor systems.

The system operates using 20 to 25 plate-type fuel assemblies placed on a rectan-

gular grid plate. There are three scramable control rods, and one non-scramable regulating

rod that can be put in automatic mode. The primary process variables that are measured are:

1) Gross output, by movable fission chamber; 2) Neutron flux, by ion chamber; 3) Start-up

neutron flux and period, by BF 3 counter; 4) Core inlet and outlet temperatures, by thermo-

couples; 5) Primary system flow, by pressure gauge; 6) Control and regulating rod posi-

tions, by potentiometer; 7) Gross gamma-ray dose, by ion chamber; 8) Various limit set

switches to monitor pool level, etc.

As with the MSS, there are a large number of events that could lead to a reactor acci-

dent with the potential to cause extensive damage. Some examples of events that could

result in hazards include uncontrolled withdrawal of the reactor control rods, loss of water

in the reactor pool, failure of a coolant pump, and high radiation levels outside of the reactor

pool. Again as with the MSS, such failures can be prevented irrespective of their cause if

safety policies such as the following (again stated informally) are enforced:

SEW Proceedings 268 SEL-94-006

Generalized Implementation of Software Safety Policies

• The control rods must not be withdrawn at a rate faster than 1.5 mm/sec.

• When control parameters are adjusted, the state of the reactor must respond to

reflect the control settings.

• The position of the regulating rod must be adjusted at least once per second based

on the power output of the reactor.

If any of the following conditions is true, the control rods must be scrammed:

• A safety channel indicates a power greater than 125% of maximum power.

• The flow in the primary cooling system is below 3,400 liters/min (900 gals/min).

• The reactor inlet water temperature exceeds 105 ° F.

• The pool level falls below 19 ft. 3 1/4 in.

• The radiation at the reactor face exceeds 2 mR/hr.

A preliminary identification of the safety policies in this application revealed a total

of 43 safety policies. As detailed requirements analysis proceeds, this number is likely to
rise.

Once the initial sets of safety policies had been identified for the two applications,

we focused on identifying common characteristics both within and between the two appli-

cations that might permit a logical organization of the two sets of safety policies. We were

seeking insight into what might be a general case in order to permit us to begin consider-

ation of a general, reusable, safety kernel. After examining a variety of possibilities, the

characteristic that permitted the most complete and systematic classification of the policies

was based on the origin and derivation of the safety policies.

Safety policies such as the examples above result from the system safety analysis,

and specify safety requirements that must be met by the various system components. In a

system safety analysis, a set of mishaps are identified along with hazards that could cause

the particular mishap. Each hazard is in turn placed at the root of a system fault tree and the

failure conditions that could result in the hazard are analyzed. The exact form of a fault tree

depends on the hazard being considered and the details of the particular application. How-

ever, we have identified a canonical fault-tree pattern for computer-controlled devices, and

we have been able to classify failure conditions according to their location and purpose

with respect to the canonical fault tree. We are thus able to classify safety policies according

to which type of condition the policy addresses, and this has yielded the following general

categories of policies:

System operation

Device failure

Software error

Software input

Sensor input

Operator error

Device operation

Device input from software

Failure response

Operator input to the software

Configuration or application data

Operator information

SEW Proceedings 269 SEL-94-006

Generalized Implementation of Software Safety Policies

Subsequent re-analysis of the two complete sets of safety policies from our two case

studies has shown that the various policies fit into the taxonomy very well. Thus, although

the applications are very different, their requirements for safe operation are remarkably

similar in basic form and differ to a large extent only in application-specific detail. Though

important, these details can be viewed as parameters that can be used to tailor a general

implementation strategy, i.e., a general-purpose safety kernel operating in a manner analo-
gous to a security kernel.

A safety kernel prototype is being developed that will enforce policies from the first

six categories of policies identified above. These are policies that originate near the top of

the canonical fault tree discussed above. They have been selected for enforcement because

they are most closely associated with the operation of the application devices. It is the

devices that actually cause a mishap, so it makes sense to enforce safety policies that are

directly related to devices. Policies from the other classes were omitted because the benefits

were not as great and the pragmatic issues of quality assurance, cost, and functional perfor-

mance would be adversely affected by enforcing policies from these classes.

Conclusions

Based on the two systems we have been studying, it appears to be the case that a

great deal of structure exists in the safety policies that have to be enforced. Given this sit-

uation, there seems to be a strong possibility that a reusable safety kernel operating inde-

pendently of the application in a manner analogous to the operation of a security kernel can

be built. Such a kernel would permit execution-time enforcement of selected safety policies
for systems too complex to verify by traditional means.

Acknowledgments

This work was supported in part by the National Science Foundation under grant

number CCR-9213427, and in part by NASA under grant number NAG1-1123-FDP.

2.

.

4.

5.

.

7.

References

Butler, R. W. and G. B. Finelli, "The Infeasibility of Quantifying the Reliability of Life-Critical

Real-Time Software," IEEE Transactions on Software Engineering, Vol. 19-1, pp. 3-12, Jan. 1993.

Garman, J. R., "The Bug Heard 'Round the World," ACM Software Engineering Notes Vol. 6-5,

pp. 3-10, October 1981.

Gillies, G. T. et al, "Magnetic Manipulation Instrumentation for Medical Physics Research,"

Review of Scientific Instruments, Vol. 65-3, pp. 533 - 562, March 1994.

Grady, M. S. et al, "Preliminary Experimental Investigation of in vivo Magnetic Manipulation:

Results and Potential Application in Hyperthermia," Medical Physics Vol. 16-2, pp. 263 - 272,
Mar/Apr. 1989.

Leveson, N. G., T. J. Shimeall, J. L. Stolzy and J. C. Thomas, "Design for Safe Software," in Pro-

ceedings AIAA Space Sciences Meeting, Reno, Nevada, 1983.

Neumann, P.G., Editor, "Risks to the Public". Software Engineering Notes.

Rushby J., "Kernels for Safety?," in Safe and Secure Computing Systems, T. Anderson Ed., Black-

well Scientific Publications, 1989, pp. 210-220.

SEW Proceedings 270 SEL-94-006

GENERALIZED IMPLEMENTATION

OF

SOFTWARE SAFETY POLICIES*

John C. Knight Kevin G. Wika

Department of Computer Science

University of Vir_nia
Charlottesville, Virginia 22903

* Work sponsored in part by NASA, the NSF, the NRC & Motorola Inc

\
NA.SAG$1_%t_E].- 94 - $1J_:1(OJolmC. K_E::I1994)

® UVA j

Department of Computer Science

f

THE PROBLEM WE FACE

Software Is Large And Complex In Many Safety-critical Systems:

Dependable?

- Cost-effective?

Huge Subsystems, E.g. System Services, Windowing, The Application, Etc.

How Do We Build Safety-critical Software That Is:

_ UVA __
Department of Computer Science

SEW Proceedings 271 SEL-94-006

NAIVE SYSTEM ARCHITECTURE

Application
Software

Application Devices

Redundant
Hardware

• Keep It Simple, S*****

NASA GSPC/S EL - 9._- Sbdc3 (_ Jo_ C I_ 1994)
UVA j
Department of Computer Science

REALISTIC APPLICATION ARCHITECTURE

Application Application Application

Windowing Windowing Windowing
System System System

Operating Operating Operating
System System System

Application Devices

Network

• Diverse Hardware, Network, High-performance Displays

• Extensive, Diverse And Unreliable Software, Perhaps Off-the-shelf

UVA j
Department of Computer Science

SEW Proceedings 272 SEL-94-006

SAFETY REQUIREMENTS AND SAFETY POLICIES _'_

Power Failure
Operator Error
Sensor Failure

Equipment Failure
Data Error

Software Failure - - - _.

SOFTWARE

Correct Operation

• Safety Requirements Can Often Be Expressed As Safety Policies

• Safety Policies -- Policies That "Software" Must Enforce To Avoid Hazard

Policies Such As The Following (From A Nuclear Reactor):

If the flow in the primary cooling system is below 3,400 liters/
minute, a scram must occur.

The source range must be indicating at least 2 counts�second

before a safety rod can be withdrawn.

How Do We Ensure Enforcement Of Safety Policies?

_ UVA
NASA GSFC./Sli2. - 94. $1,_: 5 (O J,_b,n C. IOatght 199.4) Department of Computer Science

J

f
SECURITY KERNEL CONCEPT

• Concept Is That Security Kernel Controls Access To All Information

• Kernel Enforces A Set Of Security Policies Irrespective Of Application
Software' s Actions:

Information

b,\\" _ Cla_si_ed

A::_t_:°n •_ SECURITY Data

• Might A Similar Approach Work For Safety (Rushby, 1989)?

_] UVA
NXSAGsrc.n_.. 94-s_ 6 (©J.m c _i_ t_,4) Department of Computer Science

J

SEW Proceedings 273 SEL-94-O06

SAFETY KERNEL CONCEPT

Concept Is That Safety Kernel Controls Access To All Devices

Kernel Enforces A Set Of Safety Policies Irrespective Of Application Software's
Actions:

_ Device Commands q

i. SAFETY

• A Similar Approach Appears To Work For Safety

- ®NASA GSF'C.J$1_ - 94 - Shdc 7 (O John C gau ght 19_)

j
Department of Computer Science

f
SAFETY KERNEL

Application Software

System Software

Hardware

1 I

+;, Application Software i_

Safety Kernel 1--!_

I System Software IHardware

Devices Devices

• Policy Enforcement Given To Smallest, Simplest Kernel Possible

• Kernel Controls Access To All Devices Thereby Controlling Effect Of Software

• Policy Enforcement:

- Certain Important Policies Entirely Enforced By Kernel

Enforcement Support For Other Policies

N,_A GSFC/SI_ - _ - SLide| (0 J_ C ir,.mr_ l_) UVA j
Department of Computer Science

SEW Proceedings 274 SEL-94-OO6

f_ "TRADITIONAL" KERNEL vs. SAFETY KERNEL "_

Safety Policy

Enforcement

Application
Software

f- q

I I

I Traditional I

..---""¢'1 Kernel I

Support For I I
Policy , -'

Enforcement I

Hardware

\
NASA GS_[2. - 9_., $1_d¢ 9 (O $Oha C Kaigh_ 1994)

Application
Software

i safety
I Kernel

L

Operating Sys.

Hardware

Reduced

Safety

Support

1

I Safety Policy

I Enforcement
.J

UVADepartment of Computer Science

J

f CASE STUDY - MAGNETIC STEREOTAXIS SYSTEM

X-Ray Source
INTERFACES

I

a Radio Frequ. System

_ Cryogenic System

Magnetic System

X-Ray System

Operator Displays

Superconducting
Coil

X-Ray Camera

Patient Therapy Re,on

-_ Control System
_M.R. Images, Patient Data, Etc.

Department of Computer Science

J

SEL-94-006
SEW Proceedings 275

SOME OF THE MSS SAFETY POLICIES

If the seed moves faster than 2.0 mm/sec., the coil currents must
be set to zero.

The coil currents must be within 5.0 amps of the predicted value.

The coil current requested by the application must be within the

range -100 amps to 100 amps.

An X-ray source must be "off" for 0.2 seconds before an "on"
command is executed.

The total X-ray dose during an operation must be less than 100
millirem.

Before moving the seed, a reversal check must be executed on the

requested currents to compare the predicted force with the
desired force.

And so on

NASA GSI:C/_EI. - 94 • SItae t I (_ J_ C. KmglN I_t_)
X _ UVA

_ Department of Computer Science
J

f

CASE STUDY - UVA RESEARCH REACTOR

Cooling
Tower

Swimming
Pool

Experiments

Control

Console

I

NASA GSFC_EL - 9,1. Sl_Jc 12 (O .to_n C. K.mght I_Nt)

SEW Proceedings 276

_A

Department of Computer Science

J

SEL-94-006

/"- SOME OF THE REACTOR SAFETY POLICIES -_

The control rods must not be withdrawn at a rate faster than 1.5
mm/sec.

The position of the regulating control rod must be adjusted at

least once per second based on the power of the reactor.

The control rods must be scrammed if a safety channel indicates

a power level greater than 125% of the authorized maximum.

The control rods must be scrammed if the pool water level falls
below 19' 3.25".

The control rods must be scrammed if the inlet water temperature

exceeds 105 ° F

And so on

NASA GSFCJSE3. - 94 - SI_ 13 (© llohn C _gb¢ 1994)
UVADepartment of Computer Science

J

f

Hazard

Analysis

SAFETY POLICY DEVELOPMENT

Fault Tree

Analysis

Failure Modes &

Effects Analysis

Specification

Other

Analysis

NAS.A GSFC/S Ic'l - 94- SL,dc 14 (0 Jo_ C, _ 199_t)

® UVA ._j
Department of Computer Science

SEW Proceedings 27 7 S EL-94-006

TAXONOMY - GENERAL SAFETY POLICIES

Case Study
One - MSS

Case StudyTwo - UVAR

General

Safety Policies
Policy

Taxonomy

NASA GSFC._EI. - _ - Sl_ 15 (O John C K_gt_ 1994) UVA
Department of Computer Science

J

f

EXAMPLE - DEVICE FAILURE DETECTION

Kernel Aware
Of Device Failure

Device Signals Environment
Failure Assertion Fails

No Command No "Heartbeat"
Response Received

Captures Essential Content Of "All" Device Failure Detection Policies

Parameterized Implementation In Reusable Safety Kernel

Follows From Generalized System Fault Trees

Department of Computer Science

J

SEW Proceedings
278 SEL-94-006

f

NASA GSr'C,_I - 94 - Sli_ IT (C Jo_ C _'(z_ght 199.4)

CONCLUSIONS

• Systems Are Getting Very Complex:

- Simple Software Structures Unrealistic

Users Need "Gee Whiz" Features

• No Hope Of Verifying Everything Required:

Far Too Much Software

Off-the-shelf (Untrusted) Software Might Be Included

• Safety Kernel Analogy With Security Kernel Seems Viable

• Safety Policies Examined From Two Very Different AppLications:

Taxonomy Suggested By Similarity Of Policies

General System Fault Tree Patterns

• General-purpose Safety Kernel For Variety Of Applications:

- Seems Feasible

- Significant Technical Issues In Implementation

- Prototype Kernel Being Developed - Will Be Applied To Two Case Studies

_. _ UVA
Department of Computer Science

J

SEW Proceedings 279
SEL-94-O06

SEW Proceedings 280
SEL-94-006

Session 6: Measurement

A Quantitative Comparison of Corrective and Perfective Maintenance

Joel Henry, East Tennessee State University

Does Software Design Complexity Affect Maintenance Effort?

Christopher Lott, University of Kaiserslautern

Profile of Software Engineering .Within NASA

Craig Sinclair, Science Applications International Corporation

PRECEDII_I_ P_E _._K NOT F_i'_,_3

SEW Proceedings 281
SEL-94-006

SEW Proceedings 28 2 S EL-94-006

N95- 31250

A Quantitative Comparison of

Corrective and Perfective Maintenance

Joel Henry and James Cain

Department of Computer and Information Sciences

East Tennessee State University

Sum mary: This paper presents a quantitative comparison of corrective and perfective

software maintenance activities. The comparison utilizes basic data collected throughout

the maintenance process. The data collected are extensive and allow the impact of both

types of maintenance to be quantitatively evaluated and compared. Basic statistical

techniques test relationships between and among process and product data. The results

show interesting similarities and important differences in both process and product
characteristics.

1. INTRODUCTION

Most large software systems have long lifetimes during which the software undergoes significant

change. Software maintenance is defined as the set of activities performed to change a software product

after the software product is delivered to the customer (Pressman, 1987). These activities, plus the tools

and methods used to maintain software are referred to as the maintenance process. Changes to existing

software include adding functionality to the software, correcting defects discovered in the software

system, adapting the software to changes in the environment, and changing the software to support future

maintenance or operation. The variety of changes made to software and the fact that most maintenance

personnel were not involved in the development effort add significantly to the difficulties encountered

while performing software maintenance.

In recent years the software process (including both development and maintenance) has received a

great deal of attention (Humphrey et al., 1987) (Humphrey, 1989) (Bollinger et al., 1991) because the

process used to develop and maintain software significantly impacts the cost, quality and timeliness of

software products. The impact is so significant that software process improvement is seen as the most

important approach to software product improvement (Humphrey, 1989).

PRECEFJ_]'_G FAC_E BLAI'_K NOT f_",,;_D
SEW Proceedings 283

SEL-94-006

While software development typically refers to the creation of new software, software maintenance

is performed for a variety of reasons. The four types of software maintenance activities are:

1. Corrective - changes made to correct defects in software

2. Adaptive - changes needed to adapt existing software to a changing environment

3. Perfective - enhancements to software which provide additional functionality or modify existing

functionality

4. Preventative - changes which improve future maintainability, reliability or support future

enhancements

The tasks employed during maintenance are very similar to those applied during development:

specify, design, code, and test. Thus, the first step in maintenance is to obtain a written specification

of the functionality to be added. The written specification is given by changes and additions to the

documentation specifying the functionality of the existing software. In principle the written specification

is given completely and is never changed during the ensuing maintenance effort. In practice, however,

these specifications are corrected and refined throughout the maintenance process. The changing of

functional specifications during maintenance and development is referred to as requirements volatility.

Requirements volatility has been cited as the leading problem in a field study of software managers

(Thayer et al., 1982). Changing requirements adversely affects the design, coding and testing of

software. An acute need exists to quantitatively assess the maintenance process and the impact of

requirements volatility on both the maintenance process and the software product.

The focus of this paper is a comparison of corrective and perfective maintenance activities driven

by changes to the specification documents of existing software. This comparison attempts to answer

three general questions:

1. What similarities exist between corrective and perfective maintenance characteristics?

2. What differences exist between corrective and perfective maintenance characteristics?

3. What do these similarities and differences suggest about the nature of perfective and corrective

maintenance?

This paper describes a portion of the results of a three-year study conducted at a large commercial

software organization to assess the maintenance process and the impact of requirements volatility on the

SEW Proceedings 284
SEL-94-006

maintenance process. The portion of the assessment described here illustrates similarities and differences

between corrective maintenance and perfective maintenance.

While this paper describes the results obtained within a single large organization, the results may be

used by other organizations. These results indicate organizations should manage corrective and

perfective maintenance differently.

The remainder of this paper is divided into two sections. Section 2 presents analysis results in five

distinct areas. Section 3 outlines conclusions and the direction of future work.

2. ASSESSMENT RESULTS

Five significant results are described in the following subsections. Each subsection discusses the

focus of the analysis, the data used in the analysis, and the statistical results. A maximum P-value of

0.05 and the minimum R2 value of 0.75 were established as criteria for asserting relationships existed.

This maximum P-value represents a 5% chance of mistakenly assuming a relationship exists. The

minimum R 2 can be viewed as explaining 75%of the variability of the predicted variable.

2.1 CORRECTIVE AND PERFECTIVE SIMILARITIES

2.1.1 PRODUCTIVITY

Software maintenance productivity is of particular interest when examining corrective and perfective

maintenance activities. We compared the productivity of both types of activities using corrective and

perfective activity measures. Productivity is measured in SLOCs (source lines of code) per day and

changed SLOCs per day.

Our initial examination showed only a 5.6% difference in productivity, with perfective maintenance

being slightly more productive. Requirements volatility, tracked by specification changes occurring

during design, code, and test, showed only an 8.5% difference. Again, perfective maintenance

productivity was slightly higher.

The Mann-Whitney test, which statistically tests the differences in the sample means, was applied

in order to test the hypothesis that corrective and perfective maintenance items are similar. The Mann-

SEW Proceedings 28 5 S EL-94-006

Whitney test produced a P-value of 0.9833 which is not less than the previously established maximum

P-value of 0.05. The P-value of 0.9833 supports acceptance of the hypothesis that the productivities of

corrective items and perfective items are not statistically different.

2.1.2 SIGNIFICANT IMPACT ON PRODUCTIVITY

The previous section strongly supports the assertion that productivity of corrective maintenance and

perfective maintenance is not statistically different. However, we noted differences between corrective

and perfective product impact, as shown in Table 1. Perfective maintenance impact is greater in terms

of SLOCs changed and modules changed than corrective maintenance. SLOCs changed per module

appear similar. We investigated which of these three factors influenced productivity the most. We found

the most significant factor influencing productiviy is SLOCs per module.

CORRECTIVE CORRECTIVE PERFECTIVE PERFECTIVE

TOTAL MODULES TOTAL MODULES

SLOCS CHGD SLOCS CHGD

MEAN 33.1905 1.7541 150.8511 3.0459

STD DEV 55.3804 1.7763 517.6439 3.6676

MEDIAN 10.5000 1.0000 23.5000 2.0000

Table 1. Basic Statistics for Corrective and Perfective Characteristics

SLOCS per MODULE

CORRECTIVE

PRODUCTIVITY

0.951

PERFECTIVE

PRODUCTIVITY

0.788

Table 2. Linear Correlations of Product Impact vs Productivity

Table 2 gives the linear correlations for productivity with SLOCs changed per module for both

corrective and perfective maintenance. The linear correlations for corrective and perfective are both

SEW Proceedings 286 SEL-94-O06

above the 0.75 threshold. These correlations suggest corrective and perfective maintenance productivity

are significantly influenced by the distribution of change across modules.

4.2 CORRECTIVE AND PERFECTIVE DIFFERENCES

4.2.1 PRODUCT IMPACT

This section describes the significant differences between corrective and perfective maintenance. The

characteristics compared include size of the change (measured in SLOCS), implementation

effort(measured in person days), and distribution of change(measured in modules changed). We again

applied the Mann-Whitney test, testing the hypothesis that the size and distribution of change are similar

for both types of maintenance.

The results of the Mann-Whitney tests for modules changed and size of change produced P-values

of 0.0170 and 0.0012, both significantly less than the maximum P-value of 0.05. These P-values support

rejection of the hypotheses that modules changed and size for corrective maintenance are similar to

corresponding measures for perfective maintenance. Thus, there are more lines of code, and are more

modules changed for perfective maintenance than for corrective maintenance.

4.2.2 PRODUCT IMPACT ON QUALITY

Thus far, analysis has focused on corrective and perfective characteristics within the maintenance

process, prior to delivery to the customer. This subsection examines the product impact of corrective

and perfective maintenance activities on software quality.

We obtained defect data gathered prior to delivery and following product delivery. These defects

have different levels of severity and are of great importance to the customer. Defect data (pre-delivery

and post-delivery) and product impact data were analyzed using rank correlations to determine,

statistically, their relationships.

SEW Proceedings 287 SEL-94-O06

CORRECTIVE CHANGED

SLOCs

PERFECTIVE CHANGED

SLOCs

PRE-DELIVERY DEFECTS

POST-DELIVERY

DEFECTS

0.3214 0.9702

0.2143 0.8884

Table 3. Rank Correlations of Defects And Changed SLOCs

Table 3 presents the rank correlations between the corrective and perfective changed SLOCs and the

number of pre-delivery and post-delivery defects detected. The number of perfective changed SLOCs

has a much stronger positive correlation to both types of defects than the number of corrective changed

SLOCs. These results suggest that as the number of perfective changed SLOCs increases, the number

of pre-delivery and post-delivery defects also increases.

4.2.3 PROCESS IMPACT ON QUALITY

This subsection investigates the impact of productivity on the number of pre-delivery and post-

delivery defects. This is an important area because the customer is not only interested in software

maintenance being performed in a cost-effective, timely fashion, but also in the quality of the delivered

software. In order to investigate the relationship between corrective and perfective productivity, rank

correlations will again be used.

PRE-DELIVERY DEFECTS

POST-DELIVERY

DEFECTS

CORRECTIVE

PRODUCTIVITY

- 0.8214

-0.8214

PERFECTIVE

PRODUCTIVITY

0.4545

0.5775

Table 4. Rank Correlations of Defects and Productivity

Table 4 presents rank correlations between productivity and quality for corrective and perfective

maintenance. Perfective productivity has weak correlation with the number of pre-delivery and post-

SEW Proceedings 288
SEL-94-O06

delivery defects detected, while corrective productivity has a very strong negative correlation with the

number of pre-delivery and post-delivery defects detected. This implies that as corrective maintenance

productivity increases, the number of defects increases.

3. CONCLUSIONS

The results of this investigation suggest several interesting, and perhaps provocative, characteristics

of software maintenance. Viewing the similarities, differences, and statistical relationships between

perfective and corrective maintenance confirms a previously advanced "rule of thumb", questions another

such rule, and leads to the proposal of a new rule.

Requirements volatility analysis led to the discovery of some important differences between perfective

and corrective. The size of change and distribution of change to the product differed significantly

between perfective and corrective maintenance; perfective maintenance resulted in larger and more

distributed change to the software product than corrective maintenance. However, productivity did not

show a significant statistical difference because the average change per software module remained

roughly the same for both types of maintenance. These results confirm the old rule: the more local the

change to the software product, the easier the maintenarze effort.

Analysis of the impact of perfective and corrective maintenance on the quality of the delivered

software product provides two interesting results. First, strong positive rank correlation exists between

the impact of perfective maintenance and the number of post-delivery defects detected in the software.

This correlation suggests that as the impact of perfective maintenance increases the number of post-

delivery defects also increases. Second, a strong negative correlation exists between the impact of

corrective maintenance productivity and the number of pre-delivery and post-delivery defects. This

correlation suggests that as the impact of corrective maintenance increases the number of post-delivery

defects decreases. This result questions an old rule: fixing errors inserts new errors into software.

Our results suggest a new rule: as the impact of changes to the software product caused by

corrections to the requirements document increase, the number of pre-delivery and post-delivery defects

decreases. Obviously a realistic limit to this rule exists. The number of pre-delivery and post-delivery

defects could not be eliminated by maximizing the impact of corrective maintenance.

SEW Proceedings 289 SEL-94-006

These results illustrate two additional points. First, neither the size of the change nor the distribution

of the change, taken individually, influence productivity. It is the combination of these factors which

significantly impact the productivity of both perfective and corrective maintenance activities. Second,

perfective and corrective maintenance differ significantly in both the impact on the software product and

the impact on the number of defects. These two types of maintenance differ to the extent that they

should be managed and assessed separately.

REFERENCES

Bollinger, T.B. and McGowen, C., "A Critical Look at Software Capability Evaluations," IEEE Software,

July 1991.

Humphrey, W.S. and Sweet, W.L. "A Method for Assessing the Software Engineering Capability of

Contractors," Software Engineering Institute, Carnegie Mellon University, September 1987.

Humphrey, W.S., Managing the Software Process, Addison-Wesley, 1989.

Jablonski, J., R., Implementing Total Quality Management: An Overview, Pfeiffer, 1991.

Pressman, R. S., Software Engineering: A Practitioners Approach, McGraw-Hill, 1987.

Thayer, R. H., Pyster, P. and Wood, R. C., "Validating Solutions to Major Problems in Software

Engineering Project Management," IEEE Computer, August 1982.

SEW Proceedings 29 0 S EL-94-006

A Quantitative Comparison of
Corrective and Perfective Maintenance

Software Engineering Workshop
December 1, 1994

Joel Henry
Jim Cain

East Tennessee State University

Department of Computer and Information Sciences

Overview

• Introduction

• Process

• Data collection

• Quantitative comparison

- Similarities

- Differences

• Conclusions

SEW Proceedings 291 SEL-94-O06

Introduction

Focus

- assessment of corrective and perfective maintenance activities

driven by changes to the specification documents

Purpose

- quantitative comparison of maintenance process and product
impact

Process Terminology

• Items

- Upgrade
- Corrective

• Specification Changes (SCs)

- Upgrade
- Corrective

• Miscellaneous terms

- SLOCs

- Modules

SEW Proceedings 292 SEL-94-006

Data Collection

WHAT •

- Process and product data

- Corrective and perfective maintenance data

HOW:

- Item, specification change, and computer program change
numbers

- Validation performed by multiple groups

WHERE:

- Storage in a single, central, tightly controlled database

SIMILARITIES: PRODUCTIVITY

Corrective Items vs. Perfective Items

- Basic statistics showed only a 5.6% difference in SLOCS per

person day

Corrective SCs vs. Perfective SCs

- Basic statistics showed only a 8.5% difference in SLOCS per

person day

Mann-Whitney Test showed no statistical difference in productivities

SEW Proceedings 293 SEL-94-006

SIMILARITIES: SIGNIFICANT FACTOR

CORRECTIVE ITEM PERFECTIVE

SLOCS per PERSON ITEM SLOCS per
DAY PERSON DAY

SLOCS per Module _ 0.951 0.788

I

• Coorelations of corrective items and perfective items with SLOCs
per module

DIFFERENCES: SIGNIFICANT FACTOR

CORRECTIVE

CHANGED SLOCs

PRE-DELIVERY 0.3214
DEFECTS

POST- DELl VERY 0.2143
DEFECTS

PERFECTIVE

CHANGED

SLOCs

0.9702

0.8884

• Corrective changed SLOCs show weak coorelation to pre-delivery
and post-delivery defects

• Perfective changed SLOCs show significant coorelation to pre-
delivery and post-delivery defects

SEW Proceedings 294 SEL-94-O06

DIFFERENCES: PRODUCTIVITY/DEFECT

RELATIONSHIP

PRE-DELIVERY

DEFECTS

POST-DELIVERY

DEFECTS

CORRECTIVE

PRODUCTIVITY

- 0.8214

- 0.8214

PERFECTIVE

PRODUCTIVITY

0.4545

0.5775

Productivity of perfective maintenance shows weak coorelation with

both pre-delivery defects and post-delivery defects

Productivity of corrective maintenance shows a negative coorelation

with both pre-delivery and post-delivery defects

Conclusions

• Productivity similar

• Change per module similar

• Process and product impact on quality differ

SEW Proceedings 29 5 SEL-94-006

SEW Proceedings 296
SEL-94-006

N95- 31251

Does Software Design Complexity

Affect Maintenance Effort?

Andreas Epping*

Coopers & Lybrand

Consulting GmbH

New-York-Ring 13

22297 Hamburg, Germany

Christopher M. Lott

Software Technology Transfer Initiative

Department of Computer Science

University of Kaiserslautern

67653 Kaiserslautem, Germany

19th Annual Software Engineering Workshop, 30 Nov-I Dec 1994

/
/

- ---7

Abstract

The design complexity of a software system may be

characterized within a refinement level (e.g., data flow

among modules), or between refinement levels (e.g.,

traceability between the specification and the design).

We analyzed an existing set of data from NASA's Soft-

ware Engineering Laboratory to test whether changing

software modules with high design complexity requires

more personnel effort than changing modules with low

design complexity. By analyzing variables singly, we

identified strong correlations between software design

complexity and change effort for error corrections per-

formed during the maintenance phase. By analyzing

variables in combination, we found patterns which iden-

tify modules in which error corrections were costly to

perform during the acceptance test phase.

1 Introduction

Software systems seldom remain unchanged after their

initial development and delivery. A system may be ex-

tended to fulfill new specifications or may be repaired

to remove faults. These changes, as well as many oth-

ers, are performed during a period of time called the

maintenance phase.

Some authors see software design complexity as a

highly important factor affecting the costs of software

development and maintenance [Rom87, CA88]. We

performed a study to test the hypothesis that changes to

modules with high software design complexity require

*At the time this study was performed, Epping was a student in

the Department of Computer Science, University of Kaiserslautern.

more personnel effort than changes to modules with low

complexity. We define software design complexity in

terms of several different factors, and test the hypothesis

by investigating how the complexity factors affect the

costs of changing the software.

If we can determine the impact of the complexity fac-

tors on maintenance effort, we can develop guidelines

which will help reduce the costs of maintenance by rec-

ognizing troublesome situations early. In response to

these situations, the developers may decide to reduce

the software design complexity of the systems them-

selves, to develop tools that support maintenance of

complex modules, to write documentation that helps the

developers manage the complexity better, or simply to
re-allocate resources to reflect the situation. Our results

might even be used to justify an expensive, controlled

experiment to test the hypothesis more rigorously.

In the case study presented here, we used an existing

set of data to investigate the impact of software design

complexity on the effort required to implement changes

during the acceptance test and maintenance phases. We

studied two FORTRAN systems from NASA's Software

Engineering Laboratory (SEL). The independent vari-

ables of the design complexity included a mapping to

the specification, global data bindings, and control flow

relationships. The dependent variables on maintainabil-

ity were gathered by the SEL and include the necessary

effort for isolating and implementing changes.

This paper extends work first presented in [Epp94].

Section 2 gives the design of the case study, Section 3

discusses our complexity and effort metrics, and Sec-

tion 4 explains the context of the study. Section 5

states the results for the maintenance and acceptance

SEW Proceedings

PRECED_IHG PA@E _.P.,_',_ NO1 _-'_"" _"

297
SEL-94-006

test data, and sketches related work. Finally, Section 6

summarizes lessons for the SEL. the researchers, and

the software-engineering community.

2 Designing the Study

This study, which was motivated in part by [Rom87], be-

gan by refining the original hypothesis into two, closely

related hypotheses:

Hypothesis 1: Changing modules that implement

many specifications requires more effort than changing

modules that implement few specifications.

Hypothesis 2: Changing modules that are tightly

coupled to each other via data and control-flow rela-

tionships requires more effort than changing modules

that are loosely coupled to each other.

2.1 Design

The case study to test our hypotheses was designed us-

ing the Goal/Question/Metric Paradigm [BW84, BR88].

Our G/Q/M goal was to analyze two FORTRAN systems

for the purpose of characterizing them with respect to

the influence of design complexity on the maintainabil-

ity of modules, from the point of view of the researchers

within the context of the SEL. We analyzed vertical de-

sign complexity (traceability to specifications) and hor-

izontal design complexity (coupling among modules).

We defined maintainability in terms of change isolation

effort, change implementation effort, and the number of

modules changed (locality of the change). Using these

definitions, we refined the goal into a set of questions,

and in turn refined the questions into a set of metrics.

Figure 1 diagrams the relationship of the goal and the

following sets of questions and metrics.

Goal

Q1 Q2.1 Q2.3 Q2.5 Q2.2 Q2.4 Q2.6

MI M2, M3, M4, M5, M6, M7, M8, M9

Figure 1 : Goal, questions, and metrics

QI: What are the characteristics of the software sys-

tems, the environment, the processes followed, and

the personnel? Answers are given in Section 4.

Q2.1/2.2: Is the vertical/horizontal design complexity

of modules affected by changes with high isolation

effort greater than modules affected by changes
with low effort?

Q2.3/2.4: Is the vertical/horizontal design complexity

of modules affected by changes with high imple-

mentation effort greater than modules affected by

changes with low effort?

Q2.5/2.6: Is the vertical/horizontal design complexity

of modules affected by changes that touched a large

number of modules greater than modules affected

by changes that touched few modules?

Answers to questions Q2.x will be developed using

the following design complexity and change effort met-
tics, which are discussed in detail in Section 3:

MI: The number of specifications a module fulfills,

either directly or indirectly.

M2: Number of common blocks used in a module.

M3: Number of global variables visible in a module.

M4: Number of global variables used in a module.

M5: Ratio of used:visible global variables.

M6: Number of potential data bindings in a module.

MT: Number of used data bindings in a module.

MS: Measure of fan-in for a module.

M9: Measure of fan-out for a module.

M10:

Mll:

M12:

Isolation effort per module per change.

Implementation effort per module per change.

Number of modules affected by a change.

2.2 Available data

Although we would like to assume that all changes are

similar in size, this may not be so for enhancements,

which range from trivial to extensive. However, we

can assume similarity in the size of changes for error
corrections.

Table 1 shows the count of data points from the ac-

ceptance test and maintenance phases (error corrections

are a subset of all changes). Although our original

SEW Proceedings 298
SEL-94-006

Phase

Change types
Error Corrections All Changes

Acceptance test 302 508

Maintenance 17 33

Table 1 : Data points according to category

goal was to focus on maintenance changes, the limited

data encouraged us to include acceptance-test changes.

However, interpretation of that data is difficult owing to

the different environments, as discussed in Section 4.

2.3 Analysis and threats to validity

The study tests our hypotheses by checking for rela-

tionships between the independent variables concerning

software design complexity and the dependent variables

concerning change isolation effort, change implemen-

tation effort, and number of modules changed. The ap-

propriate statistical approach for univariate analysis is a

correlation analysis. As will be explained in Section 3,

both the isolation and implementation effort metrics lie

on an ordinal scale, so we must use a correlation tech-

nique which does not require ratio or interval-scale data.

We planned to compute Spearman rank-correlation co-

efficients with respect to single complexity measures of

the modules and the maintainability measures.

Based on the notion that a combination of indepen-

dent variables might better explain high change effort

than only a single variable, we planned to analyze

multiple variables in combination using a machine-

learning technique called Optimized Set Reduction

(OSR) [BTH93, BBH93]. OSR finds patterns in the

independent (explanatory) variables which reliably pre-

dict values of a single dependent variable. The OSR

approach is insensitive to the scale of the data, but re-

quires a large data set, ideally several hundred points.

We planned to apply the OSR technique to the full data

vectors; i.e., consider all explanatory variables together.

If we can find strong correlations between design

complexity values and change effort values, or can find

patterns of large design complexity values that reliably

predict which modules are expensive to change, we will

have confirmed our hypotheses for this data set.

There were at least two threats to internal validity.

First, the nature of a case study meant that we were not

able to control or even measure the factors that influ-

enced the SEL personnel during their day-to-day activi-

ties. Second, individual differences may be responsible

for some variation (i.e., noise) in the data.

One significant threat to external validity is the spe-

cialization of the software-system design used by the

SEL. These results may not be applicable to other FOR-

TRAN systems.

3 Complexity and Maintainability

Curtis refines the concept of software complexity into

algorithmic and psychological complexity [Cur80]. Al-

gorithmic (or computational) complexity characterizes

the run-time performance of an algorithm. Psychologi-

cal complexity affects the performance of programmers

trying to understand or modify a code module. We mea-

sured two aspects of psychological complexity, namely

the vertical design complexity (the relationship between

specifications and modules) and the horizontal design

complexity (the relationship between modules). A mod-

ule is a file with a single subroutine. These relationships

are illustrated in Figure 2.

>..,

X

E
O

¢>

:>

Spec SI 1
A

imple-

ments

calls

•<------ Horizontal complexity

Figure 2: Vertical and horizontal design complexity

3.1 Vertical complexity: the relationship be-

tween specifications and modules

The vertical complexity of a module x is the number of

specifications the module helps implement. To measure

vertical complexity, we count how many specifications

a module implements directly (mentioned in the doc-

umentation) or indirectly (invoked by another module

that implements the specification directly or indirectly).

An example is shown in Figure 2, where module x helps

implement specificatmn SI directly and calls module y,

meaning that module y helps implement S 1 indirectly.

SEW Proceedings 299 SEL-94-006

3.2 Horizontal complexity: the relationship

between modules

The horizontal complexity of a module z is character-

ized by the number of connections between that module

and other modules. An example is shown in Figure 2,

where module g writes data into a global variable g, that

is read in turn by module z. We analyzed the source

code to gather data for the following metrics:

• Number of COMMON blocks which are referenced

in a module.

• Number of visible global variables; i.e., the vari-
ables defined in the referenced COMMON blocks.

• Number of used global variables; i.e., the visible

global variables that were also used in the code.

• Ratio of used global variables to visible global
variables.

For modules p and q, and a variable z within the

static scope of both p and q, a potential data bind-

ing is defined as an ordered triple (p, q, z) [HB85].

Again using p, q, and z, a used data binding is a

potential data binding where p and q either read a

value from or assign a value to z [HB85].

• The fan-in measure of a module is the number of
other modules which call the module.

• The fan-out measure of a module is the number of
other modules which the module calls.

3.3 Maintainability

Maintainability is an abstract concept that cannot be

assessed directly but may be defined using attributes of

the software that can be measured. We use change effort

as our metric for maintainability.

Changes. The SEL distinguishes between three types

of changes. An error correction repairs faults in the

software. An enhancement implements changes for ex-

tended specifications. An adaptation makes provisions

for alterations in the system's environment. For us, the

error corrections were of primary interest.

4

Effort data, The analyses presented here are based

on a four-step model of the change activity that guides

data collection. In step one, the developers/maintainers

become aware of the need for a change. Step two in-

volves isolating the modules to be changed. In step

three, they plan and implement the change. Finally,

in step four they test the changed code. The change
effort data that was available to us were limited to the

following, routinely collected items [Nat91 b]:

• Isolation effort: the effort to determine which mod-

ules must be changed (step two).

• Implementation effort: the effort to plan, imple-

ment, and test the change (steps three and four)

• Locality: the number of components affected by a

change.

Effort expended during the maintenance phase is col-

lected as a point on an ordinal scale, namely "less than

one hour," "one hour to one day," "one day to one week,"

"one week to one month," and "greater than one month?'

Effort expended during the acceptance test phase is col-

lected using the ordinal scale of "less than one hour,"

"one hour to one day;' "one day to three days" and

"more than three days?'

4 Context of the Study

The study was conducted on two projects developed

by the Flight Dynamics Division (FDD) of NASA's

Goddard Space Flight Center. Data about the FDD's

projects are gathered by the Software Engineering Lab-

oratory (SEL), a cooperative effort of NASA's FDD,

Computer Sciences Corporation, and the University of

Maryland. The SEL was founded and began collecting

data about the FDD's development activities in 1976.

Data collection from maintenance activities began in

1988 [RUV92].

4.1 FDD Staff

The staffwho performed the changes were familiar with

both the application domain (ground-support software

for satellites), which were similar for both systems, and

the solution domain (FORTRAN), which was identical for

both systems.

SEW Proceedings 300 SEL-94-006

4.2 Activities in the acceptance test phase

During the acceptance test phase, the original devel-

opers exercise the system to detect failures and repair

faults as needed [Nat91a]. Enhancements and adapta-

tions may also be made to the software during this phase

owing to new requirements.

4.3 Activities in the maintenance phase

During the maintenance phase, a team of software en-

gineers who were not the original developers tests the

software using simulators and modifies the systems as

needed [Nat91a]. These engineers are experts in their

application domain, but not necessarily highly familiar

with the software systems. The maintenance phase es-

sentially ends when satellites are launched; in any case,

no data are collected following the launch.

4.4 The software systems

Project 1 and Project 2 (names have been changed) are

ground-support software systems that were coded in

FORTRAN. Both were single-mission systems. 1 Their

sizes were approximately 130 and 180 KSLOC (car-

riage returns). These systems determine the exact po-

sition of a satellite with respect to other planetary bod-

ies using data sent by the satellite. The systems do

not run continuously, they are not subject to real-time

constraints, and they are not required to meet highly

stringent reliability requirements. For both projects,

the software architecture and document standards are

highly similar and specific to the FDD environment.

4.4.1 Specifics of Project 1

Project 1 consists of 582 modules. Of those, 23 modules

are assembler modules, with a range of 6-3100 SLOC

(carriage returns). The other 559 modules are FORTRAN

modules (range 2-3200 SLOC). The system consists of

15 subsystems.

Changes in acceptance test. The developers pro-

cessed 179 change requests during acceptance testing.

Those change requests directly affected 163 unique

modules, but owing to multiple changes to the same

A single-mission system is expected to cost 2% of development

costs per year in maintenance until ;t is taken out of service, while

a multi-mission system is expected to cost 10% [PS93].

modules, there were 306 changes to code modules. Of

the 163 changed modules, 32 modules were not avail-

able to us, or were assembler modules that were not

analyzed. Therefore 48 changes to individual modules

and 33 change requests total could not be analyzed.

Project 1 was in development (design, code, and test

activities) for approximately 28 calendar months. Of

those 28 months, the acceptance test phase lasted ap-

proximately 5 months.

Changes in maintenance. The single maintainer pro-

cessed 15 change requests during maintenance. Of

those, 5 were corrections, 9 were enhancements and

1 was an adaptation. Those change requests directly

affected 28 unique modules, but because of multiple

changes to the same modules, there were 37 changes to
code modules. The assembler modules were not con-

sidered (5 change requests, 2 modules).

The maintenance phase for Project 1 began in 1988.

Because of launch delays, it lasted about 33 months.

The level of effort was extremely low for much of that

time.

4.4.2 Specifics of Project 2

Project 2 consists of 816 modules. Of those, 31 mod-

ules are assembler modules (range 6-7300 SLOC). In

addition to the 747 FORTRAN modules (range 3-2800

SLOC), there are 38 data files (range 9--400 SLOC).

The system consists of 30 subsystems.

Changes in acceptance test. The developers pro-

cessed 413 change requests during acceptance testing.

Those change requests directly affected 346 unique

modules, but because of multiple changes to the same

modules, there were 850 changes to code modules. Of

the 346 changed modules, 119 modules were not avail-
able to us, or were assembler modules which were not

analyzed. Therefore 238 changes to individual modules

and 136 change requests total could not be analyzed.

Project 2 was also in development for approximately

28 calendar months. Of those 28 months, the acceptance

test phase lasted approximately 7 months.

Changes in maintenance. The four maintainers pro-

cessed 25 change requests during maintenance. Of

those, 12 were corrections, 12 were enhancements, and

1 was an adaptation. Those change requests directly

SEW Proceedings 301 SEL-94-006

affected 55 unique modules, but because of multiple

changes to the same modules, there were 67 changes to

code modules. Fortunately for our analysis, the assem-

bler modules were not changed.

The maintenance phase for Project 2 began in 1988

and lasted about 19 months.

5 Results

After discussing some problems with the data, we

present results from analyzing the maintenance and ac-

ceptance test data and sketch results from related work.

resolved this difficulty by using an average for each

change, namely the average of the complexity measures

that were collected from the modules affected by that

change. All analyses therefore are focused on changes

rather than modules. However, by averaging, we re-

duced the range in complexity values, possibly losing

significant differences.

Finally, we concluded that significant differences in

effort were hidden by the ordinal scale of the effort

data. For example, a maintenance change that required

9 hours of implementation effort is quite different from

one that required 39 hours, but both are classified iden-

tically as "one day to one week."

5.1 Data difficulties

We encountered some difficulties while trying to collect

the data for the metrics defined in Section 2. In all

fairness to the SEL, their data-collection forms were

not designed to support such a detailed investigation,

and we could not change data collection after the fact,

so some problems were to be expected.

First, collecting data for metric MI depended both

on the modularity of the specification and the traceabil-

ity of the specifcation to the code. At one extreme of

modularity, the whole project can be seen as one single

specification, while at the other extreme, every condi-

tion such as "x > 0'" can be also seen as a specification.

We began by using the system description document, in

which a system is divided into 40-70 subspecifications.

Even with this coarse level of modularity, it was not pos-

sible to map the modules to the subspecifications with

any hope of accuracy because there was no document

containing this information. We resolved this difficulty

by simplifying the problem. Because the subsystems

(Projects 1 and 2 had 15 and 30, respectively) were eas-

ily identifiable both in the requirements document and

in the code, we essentially labeled each subsystem a

"specification." Then we traced modules back to sub-

systems by analyzing the calling structure of the code.

The change effort data presented a second problem.

In the SEL environment, a change activity occurs in re-

sponse to a change request, and may affect many mod-

ules. The effort data are collected for each change

activity, but no data for the change effort per module

are collected. Because it is impossible to determine

from the data how much change effort was expended

on individual modules, we could not obtain values for

metrics MIO, MI I, and MI2 as originally planned. We

5.2 Results from the maintenance data

5.2.1 Vertical complexity measures

First we tested hypothesis 1 using maintenance data,

subject to the caveats discussed in Section 5.1.

Data collection process. We built a prototype tool

that extracted the module calling trees from the FOR-

TRAN code for each subsystem. This information told

us which modules were part of a particular subsystem.

While collecting these data, we found that not all of the

modules changed are executable modules, and therefore

are not in the call tree. Measures of change effort were

obtained by querying the SEL database [Nat90] and by

examining the data-collection forms completed by the

maintainers after making the changes.

Results from univariate analyses. For Project 1, 19

modules that were changed were found in the call tree.

Of those 19 executable modules, only 3 supported mul-

tiple subsystems; i.e., helped implement more than one

specification. For Project 2, 32 modules that were

changed were found in the call tree. Of those 32 ex-

ecutable modules, only 1 supported multiple subsys-

tems. This left us with 4 data points for changed mod-

ules which supported multiple subsystems. None of the

4 modules participated in changes with above-average

isolation or implementation effort.

Results from multivariate analyses. The OSR tech-

nique requires a large set of data to be effective. Because
the maintenance data set was too small to be used, we

have no multivariate results.

SEW Proceedings 302
SEL-94-006

Interpretation. We could not support hypothesis 1;

the answer to questions 2.1, 2.3, and 2.5 was "not for

these data." Although our analysis found many mod-

ules that supported more than one subsystem, few of

those modules were changed. We later learned that

many of the modules which are widely reused are util-

ity functions or so-called "institutional software." This

term refers to modules that are reused repeatedly from

project to project and are rarely changed.

We also learned that subsystems are designed mostly

in isolation from one another, with the result that mod-

ules are not reused wide!y across subsystems. Although

our definition of a "specification" was arguably too

coarse, we could not refine the traceability further with-

out a detailed familiarity with the systems.

An interesting result was that for Project 1, 12 of the

19 changed executable modules were from a single sub-

system. No comparable, frequently changed subsystem

was identified in Project 2, although the changes were

clustered in 5 of the 30 subsystems.

5.2.2 Horizontal complexity measures

Next we tested hypothesis 2 using maintenance data.

Data collection process. We built a prototype tool

which counted the use of common blocks and common-

block variables in the FORTRAN code, and reused the

calling-tree information from the analysis of vertical

complexity for the measures of fan-in and fan-out. After

loading all the resulting data into a database system,

it computed the necessary' complexity values. Recall

that module complexity values were averaged on a per

change basis as explained in Section 5.1. Effort data
were obtained as discussed in Section 5.2.1.

Results from univariate analyses. Figure 3 uses data

about error corrections from the maintenance phase to

plot isolation effort against the average number of used

common blocks (metric M2) in the modules affected by

each change. This figure shows a trend towards higher

effort when the average number of common blocks is

also high. Thus encouraged, we computed correlations

for the change data from the maintenance phase.

Table 2 shows the Spearman rank-correlation coeffi-

cient values for the relationships between all indepen-

dent and dependent variables for all changes during

maintenance: Table 3 shows only the coefficient values

for error corrections. The correlations were computed

5

I

II 5 I[/ 15

A_erage number ot cornm_n hkx:k_,

Figure 3: Data for error corrections in maintenance

as explained in Section 2.3. An approximation of the

.05 cutoff (a 5% chance of obtaining the numbers by

chance) is given in both tables to help judge the signifi-

cance of the results.

Results from multivariate analyses. As mentioned

previously, we had too few data points to apply OSR to
the maintenance data.

Interpretation. When considering all changes during

maintenance, all measures of global variables corre-

lated positively (some significantly) with isolation ef-

fort. The counts of used globals and actual data bindings

showed the most significant correlation of all measures;

in an absolute sense the correlation is weak (approxi-

mately 0.60). These results support the idea that global

variables make a program difficult to understand, al-

though this conjecture was not supported by [LZ84]

(see also Section 5.4). We found no significant correla-

tion between complexity measures and implementation

effort, nor between complexity measures and the num-

ber of modules changed. The measures of control-flow

complexity were not helpful. To summarize the results

for all changes, we can support hypothesis 2 in some

respects: the answer to question 2.2 (isolation effort) is

a qualified yes for some of the measures, but the an-

swer to questions 2.4 (implementation effort) and 2.6

(locality) is "not for these data."

When considering just the error corrections during

maintenance, the measures of global variables correlate

positively and much more strongly with the isolation

effort than previously. Both the counts of used globals

SEW Proceedings 303 SEL-94-O06

Dependent variables

(averages per change)

Independent variables
Modules

changed

Isolation Implem'n
effo_ effo_

.415 .088

.575 .207

.628 .228

Y34 .303

.528 .193

_99 .214

-.268 -.010

.322 .181

M2: Common blocks -.376

M3: Visible global vars -.303

M4: Used globals vars -.198

M5: Ratio used:visible globals .105

M6: Potential data bindings -.330

M7: Used data bindings -.294

M8: Fan-in .067

M9" Fan-out -.363

N = 33, critical r (.05) t approximation = .343

Table 2: Spearman rank-correlation coefficients for all changes during maintenance

Dependent variables

(averages per change)

Independent variables
Modules

changed

Isolation Implem'n
effo_ effo_

.738 .403

.785 .511

.799 .511

.619 .493

.770 .511

.813 .511

-.406 -.208

.610 .545

M2: Common blocks -.169

M3: Visible global vats -.143

M4: Used global vats .000

M5: Ratio used:visible globals .164

M6: Potential data bindings -.214

M7: Used data bindings -. 102
M8: Fan-in -.096

M9: Fan-out -.143

N = 17, critical r (.05) t approximation = .482

Table 3: Spearman rank-correlation coefficients for error corrections during maintenance

SEW Proceedings
304

SEL-94-006

and actual data bindings again showed the most signifi-

cant correlations, in this case fairly strong in an absolute

sense (approximately 0.80). We also found correlations

with implementation effort; some were significant but

again weak in an absolute sense (approximately 0.50).

Fan-out correlated positively weakly with both mea-
sures of effort. No measures correlated with the number

of affected modules. To summarize the results for the

error corrections, we can support hypothesis 2 strongly;

the answers to questions 2.2, 2.4, and 2.6 are a reason-

able yes, a weak yes, and another "not for these data."

Finally, we found it interesting that the number of

changed modules frequently correlated negatively, al-

though weakly, with the complexity values. We are

unable to explain this result.

5.3 Results from the acceptance test data

As mentioned earlier, we extended the scope of the

study to include data from the acceptance test phase.

The results must be interpreted carefully, because the

measures of the source code were computed using the

code as it existed at the end of the maintenance phase.

A version of the code from the end of the acceptance

test phase was not available.

5.3.1 Vertical complexity measures

Due to the problems discussed in Sections 5.1 and 5.2.1,

we did not test hypothesis 1 using acceptance test data.

5.3.2 Horizontal complexity measures

Finally, we tested hypothesis 2 using the acceptance test
data.

Data collection process. The measures M2 to M9

were computed from the source code as of the end of the

maintenance phase. Again, module complexity values

were averaged on a per change basis as explained in

Section 5.1. Measures of change effort were obtained

by querying the SEL database [Nat90].

Results of univariate analyses. Figure 4 uses data

about error corrections from the acceptance test phase

to plot the isolation effort against the average num-
ber of common blocks in the modules affected by each

change. Plots of isolation and implementation effort

3

0 0 ; /o ,'5 ;o
Average number of common blocks

Figure 4: Data for error corrections in acceptance test

against other independent variables were similarly ran-

dom, which discouraged us from computing univariate

correlations.

Results of multivariate analyses. Because we had

data for several hundred changes in the acceptance

test phase, we were able to apply the OSR tech-

nique [BTH93, BBH93]. Based on the results achieved

when working with the maintenance data, we restricted

the data set to the error corrections. All analyses took

the approach of trying to identify whether the error cor-

rections (changes) would be inexpensive or expensive,

where inexpensive was defined as requiring one day

or less (the lower two values on the ordinal scale) and

expensive was defined as requiring more than one day

(the upper two values). The technique found reliable

patterns when using isolation effort as the dependent

variable, but found no reliable results when using im-

plementation effort or locality as the dependent variable.

All results are expressed as OSR patterns. Patterns

provide interpretable models where the impact of each

predicate can be easily evaluated [BTH93]. An OSR

pattern is a set of one or more predicates, where pred-

icates have the form (EVi E EVclass,3), meaning that

a particular explanatory (independent) variable EVi be-

longs to part of its value domain, i.e., EVclassij. Taken

as a whole, the pattern predicts whether the value of the

dependent variable will be in the high-cost or the low-

cost class. For each pattern, we state the reliability of

the prediction (a measure of pattern accuracy), and the

significance level of the reliability (whether the pattern

is based on a sufficiently large set of data to be trusted).

The OSR technique found reliable and significant pat-

SEW Proceedings 305 S EL-94-006

terns which predict low and high isolation effort. We

present patterns which had high reliability values (> 0.8)

and low reliability significance values (< 0.05).

Pattern L1:

Fan-in _: 26-100% AND

fan-out E 0-50% _ low

(reliability 0.85, rel. sig. 0.011)

Pattern L1 suggests that modules with medium to

high tan-in values and low fan-out values were easy

to change (predicts low isolation effort). This pattern

may indicate leaf modules (such as library, subroutines)

which are called frequently but call few other modules.

Pattern L2:

Used var E 0-12% OR

used db E 0-11% ::z, low

(reliability' 0.92, tel. sig. 0.001)

Pattern L2 suggests that modules with low numbers

of used variables or low numbers of used data bindings

were easy to change (predicts low isolation effort).

Pattern H 1:

Fan-in ¢ 8-26% AND

(used db 6 20-100% OR

used var _ 20-100%) _ high

(reliability 1.00. rel. sig. 0.000)

Pattern Hl suggests that ifa module is called by a rel-

atively low number of other modules, and additionally

has many' used data bindings or many used variables,

then that module was expensive to change (predicts high

isolation effort).

Pattern H2:

Ratio used:visible E 63-100% AND

(vis var E 34-100% OR

used db E 30-100%) _ high

(reliability 1.00, rel. sig. 0.001)

Pattern H2 suggests that if a module has a high ratio

of used to visible global variables, and additionally has

many visible variables or many used data bindings, then

that module was expensive to change (predicts high

isolation effort).

Pattern H3:

Fan-out E 42-100%

AND used db E 59-100% _ high

(reliability 1.00, rel. sig. 0.007)

Pattern H3 suggests that modules which call many

other modules and have many data bindings to other

modules were expensive to change (predicts high isola-

tion effort).

Interpretation. The univariate analyses were not

helpful, but the OSR analysis identified some patterns

that reliably characterize modules which participated

in error corrections with both low and high isolation

effort. All of the patterns support hypothesis 2. We

have not established a causal relationship between the

patterns and isolation effort, no statistical analysis tech-

nique does so, but we have identified a set of patterns

that may be suitable for further investigation.

5.4 Results from related studies

We summarize the results of previous studies and ex-

periments that analyzed the effects of design complexity

on various dependent variables. Note that comparisons

with related work are dangerous owing to different def-

initions of both independent and dependent variables.

Lohse and Zweben [LZ84] ran a controlled exper-

iment to examine the effects of data coupling (data

flow among modules) via global variables versus formal

parameters, in the context of performing maintenance

changes (enhancements) to two software systems. The

primary dependent variable was the time required to

implement the enhancement. They found no significant

differences attributable to the use of global variables

versus formal parameters.

Card et al. [CCA86] performed a case study on five

SEL FORTRAN systems to examine the impact of var-

ious design practices on the dependent variables fault

rate and cost in the context of development. They found

no correlation with the percentage of referenced vari-

ables in COMMON blocks but a positive correlation

with the number of descendants (fan-out). The percent-

age of unreferenced variables from COMMON blocks

correlated with faults, but not with cost.

Rombach [Rom87] ran a controlled experiment to

examine the effects of various programming-language

constructs on isolation effort, implementation effort,

and locality in the context of performing mainte-

nance changes (enhancements) to two software systems.

Complexity was measured in terms of information flow,

which includes both data bindings and control flow be-
tween modules. He found a correlation of both isola-

tion effort and locality with external complexity, but no

10

SEW Proceedings 306 S EL-94-006

correlation of implementation effort with external com-

plexity. Our results support his with respect to isolation

and implementation effort, but not locality.

Card and Agresti [CA88] performed a case study on

SEL FORTRAN systems to test for a relationship between

a combined complexity measure and either productivity

(lines of code delivered per unit of time) or fault rate in

the context of development. Their combined measure

of local complexity (e.g., cyclomatic complexity) and

structural complexity (e.g., module fan-out) correlated

well with productivity and number of faults. Because

their study does not separate local (internal) complexity

from structural (external) complexity, we cannot com-

pare results.

6 Conclusion and Lessons Learned

The data from the two SEL systems support our hypoth-

esis 2, so we can answer in the affirmative that horizontal

design complexity appears to affect maintenance effort

(isolation effort for error corrections). However, we

have only demonstrated a possible relationship. We

cannot establish causation using a case study.

Next we summarize the results of the study in terms

of what the SEL can learn, what we learned, and what

the software-engineering community can learn. Our

analyses, which we primarily see as pointers for further

investigation, found a number of relationships between

software design complexity and maintenance effort that

might help the SEL predict maintenance effort. Uni-

variate analysis showed that the metrics "used globals"

and "used data bindings" correlated strongly with the
isolation effort for error corrections performed during

the maintenance phase. Data for other metrics relat-

ing to the definition and use of global variables also
correlated with isolation effort, but much less strongly

with implementation effort. The measure of fan-out

was also somewhat helpful in explaining high isolation

effort. Multivariate analysis of acceptance test data us-

ing OSR found a number of patterns which were strong

indicators of both low and high isolation effort in this

data set. Future studies could be performed using other

SEL systems to test whether the relationships and pat-
terns which we found hold for more than just the two

systems that we analyzed.

We gained a better understanding of the data required

for thoroughly testing our hypotheses. First, to measure

vertical complexity, both the modularity of the specifi-

cation and its traceability to the code must be addressed.

To solve the latter problem, a traceability matrix could

be constructed in which the rows represent individual

code modules and the columns represent units of the

specification. A mark in the matrix means that the

module of that row implements the unit of specification

of that column. To build such a matrix, the modularity

of the specification is critical, but beyond the scope of

this paper. Second, to measure the effort required for a

change, we need to collect the isolation and implementa-

tion effort on a per-module basis whenever possible. A

minor change to the SEL's data-collection forms could

be to collect an estimate of the percentage of the total

effort required by each module. However, some effort,

such as the effort to test the changed modules together,

cannot be allocated to individual modules. Third, the

simplest and most helpful change to the SEL's data col-

lection forms (from our point of view) would be the use

of a ratio scale such as days or hours for collecting effort

data instead of the ordinal scales currently in use. This

would allow us to distinguish more precisely between

different changes as well as to compare effort data be-

tween the maintenance and acceptance test phases.

Finally, we believe that an empirical investigation

such as this one uncovers more challenging questions

than it answers. Future work might include replicat-

ing our stud5' by analyzing the designs of other SEL

software systems or systems from other software devel-

opment organizations. Our data might also be used as a

basis for planning and running a controlled experiment

such as the one discussed in [Rom87] to test our hy-

potheses more rigorously. In a controlled experiment,

programmers (subjects) might implement changes of
similar sizes in modules that have low, medium, and

high software design complexities. This would allow

the researchers to control for many effects as well as

to measure the effort required on a per-module basis to

implement changes. Such an experiment would offer

stronger evidence for refuting or accepting our hypothe-

ses than any case study.

7 Acknowledgements

We would like to thank Lionel Briand and Alfred

Br6ckers for help with the analyses, Dieter Rombach

for suggesting the hypotheses, Jon Valett for answer-

ing our questions, and most importantly, the SEL for

trusting us with their systems and data.

11

SEW Proceedings 307 SEL-94-006

References

[BBH93] Lionel C. Briand, Victor R. Basili, and

Christopher J. Hetmanski. Developing in-

terpretable models with optimized set reduc-

tion for identifying high-risk software com-

ponents. IEEE Transactions on Software

Engineering, 19(11): 1028-1044, November
1993.

[BR88]

[BTH931

[BW841

Victor R. Basili and H. Dieter Rombach.

The TAME Project: Towards improvement-
oriented software environments. IEEE

Transactions on Software Engineering, SE-

14(6):758-773, June 1988.

Lionel C. Briand, William M. Thomas, and

Christopher J. Hetmanski. Modeling and

managing risk early in software development.
In Proceedings of the 15 th International Con-

ference on Software Engineering, pages 55-

65. IEEE, May 1993.

Victor R. Basili and David M. Weiss. A

methodology for collecting valid software

engineering data. IEEE Transactions on

Sofm,are Engineering, SE-10(6):728-738,

November 1984.

[CA88] David N. Card and William W. Agresti. Mea-

suring software design complexity. Journal of

Systems and Software, pages 185-197, June

1988.

[CCA86]

[Cur80]

David N. Card, Victor E. Church, and

William W. Agresti. An empirical study of

software design practices. IEEE Transactions

on Software Engineering, SE- 12(2):264-271,

February 1986.

Bill Curtis. Measurement and experimenta-

tion in software engineering. Proceedings

of the IEEE, 68(9):1144-1157, September
1980.

[Epp94] Andreas Epping. An empirical investigation

of the impact of the structure of two software

systems on their maintainability (in German).

Master's thesis, Department of Informatics,

University of Kaiserslautern, 67653 Kaisers-

lautem, Germany, April 1994.

[HB85]

[LZ84]

[Nat90]

[Nat91a]

[Nat91 b]

[PS93]

[Rom87]

[RUV92]

David H. Hutchens and Victor R. Basili. Sys-

tem structure analysis: clustering with data

bindings. IEEE Transactions on Software En-

gineering, SE- 11 (8):749-757, August 1985.

John B. Lohse and Stuart H. Zweben. Exper-

imental evaluation of software design princi-
ples: An investigation into the effect of mod-

ule coupling on system modifiability. Jour-

nal of Systems and Software, 4(4):301-308,
November 1984.

National Aeronautics and Space Administra-

tion. Software Engineering Laboratory (SEL)

Database Organization and User's Guide,

Revision 1. Technical Report SE1-89-101,

NASA Goddard Space Flight Center, Green-

belt MD 20771, February 1990.

National Aeronautics and Space Administra-

tion. Manager's handbook for software de-

velopment. Technical Report SEL-84-101,

NASA Goddard Space Flight Center, Green-
belt MD 20771, 1991.

National Aeronautics and Space Adminis-

tration. Software engineering laboratory

(SEL) relationships, models, and manage-

ment rules. Technical Report SEL-91-001,

NASA Goddard Space Flight Center, Green-

belt MD 20771, February 1991.

Rose Pajerski and Donald Smith. Recent SEL

experiments and studies. In Proceedings of

the 18 th Annual Software Engineering Work-

shop, pages 81-94. NASA Goddard Space

Flight Center, Greenbelt MD 20771, 1993.

H. Dieter Rombach. A controlled exper-

iment on the impact of software structure

on maintainability. IEEE Transactions on

Software Engineering, SE-13(3):344-354,
March 1987.

H. Dieter Rombach, Bradford T. Ulery, and

Jon Valett. Toward full life cycle con-

trol: Adding maintenance measurement to

the SEL. Journal of Systems and Software,

18(2):125-138, May 1992.

12

SEW Proceedings 308 SEL-94-006

Does Software Design Complexity
Affect Maintenance Effort?

A study of existing NASA/SEL data

Andreas Epping, Uni-KL (M.S. thesis)

Christopher Lott, SFrI-KL

19th GSFC Software Engineering Workshop
1 December 1994

Overview

• Problem and hypotheses

• Vertical and horizontal design complexity

• Study design, independent and dependent variables

• Results for maintenance data

• Results for acceptance test data

• Conclusions and lessons learned

STTI-KL
1P3

SEW Proceedings 309 SEL-94-006

Problem and hypotheses

It is generally believed that software design complexity affects error rate,
change effort etc.

Supporting studies include: Card et al., TSE 86; Rombach, TSE 87;
Card & Agresti, JSS 88; Briand et al., CSM 93.

We used existing SEL data to test two related hypotheses:

Hypothesis 1 Module implements many specifications (vertical complexity)
maintenance effort will be high

Hypothesis 2: Module is tightly coupled to others (horizontal complexity)
maintenance effort will be high

S'I-rI-KL
2/9

,m

x

E
O
o

o
.N

G)
>

Terminology: Design complexity

I Spec $1

A

' imple-
'ments writes read by

calls

.e---- Horizontal complexity------>

S'I-rI-KL
3/9

SEW Proceedings 31 0 SEL-94-006

Design via G/Q/M
G

Ana__so_are design complexity

//../.4_th respect to its effect on maintainability_Q Q

What i_bution of What is the distribution of

isolafipn effort foi_..dules implem'n effod for modules

withJigh_ vertical co :_gh_,'ty? with high vertical complexitY?M
0 0 "@ O

Vertical Horizontal Isolation Implem'n

complexity complexities effort effort

Independent variables Dependent variables

Q
0

What is...

M

©
Number of

modules changed

STTt-KL 4/9

Design: variables

• Independent variables (newly gathered):

- Vertical design complexity (1 measure)
Number of specifications which a module implements (in)directly

• Problems: modularity of the specification and traceability to code
- Horizontal design complexity (8 measures)

• Number of COMMON blocks referenced in a module

• Minor problem: limited to static metrics derived from the code

Dependent variables (existing data):

- Maintainability (3 measures)
, Isolation effort, Implementation effort, Number of modules changed
• Problems: collected per change, not per module; ordinal scale for effort

S'FI'I-KL 5/9

SEW Proceedings 311 SEL-94-006

Results for error corrections in maintenance

Unable to test hypothesis 1 (vertical complexity).

Results for hypothesis 2 (horizontal complexity) using 17 data points:

• Significant and strong correlations found with isolation effort

Example: 0.785 for count of visible global variables (.05 cutoff: .482)

• Significant but weak correlations found with implementation effort

Example: 0.511 for count of visible global variables (.05 cutoff: .482)

• No significant correlations found with locality

Example: -.303 for count of visible global variables (.05 cutoff: .482)

sI-rI-KL 6/9

Results for error corrections in acceptance test

Unable to test hypothesis 1 (vertical complexity).

Results for hypothesis 2 (horizontal complexity) using 302 data points:

• Analyzed variables in combination using Optimized Set Reduction (OSR)

• Found reliable patterns for complexity values which predict isolation effort:

- Fan-in in 26-100% of value range AND fan-out in 0-50% _ low iso. eft.
(Reliability 0.85, reliability significance 0.011)

- Fan-out in 42-100% AND used data bindings in 59-100% _ high iso. eft.
(Reliability 1.00, reliability significance 0.007)

S_ 7/9

SEW Proceedings 312 SEL-94-006

Related work

Lohse & Zweben 1984 (JSS):

Controlled experiment to compare coupling via globals vs. formal parameters.
Results showed no significant difference; is not directly comparable.

Card et al. 1986 (TSE):

Case study of influence of software design practices on cost and fault rate.
Fan-out was highly influential; the influence was not as large in our study.

Rombach 1987 (TSE):

Controlled experiment to analyze influence of complexity on maint, effort.
Isolation effort affected more than impl'n effort; supported by our study.

Card & Agresti 1988 (JSS):

Case study of influence of complexity on productivity and fault rate.
Different definition of complexity makes comparison impossible.

STTI-KL 8/9

Conclusions and lessons learned

• Cannot test Hypothesis 1 (vertical complexity) using existing SEL data.

• Can support Hypothesis 2 (horizontal complexity) using existing SEL data:

- Univariate analysis of horizontal complexity measures (i.e., coupling)
identified modules that are likely to cause changes to be expensive.

- OSR identified patterns in complexity (coupling) data likely to increase
isolation effort, but found no reliable patterns for implementation effort.

• Lessons for the SEL:

- Correlations and patterns help predict maintenance effort.

- We are not confident enough to recommend complexity (coupling) limits.
- Need effort data drawn from a ratio scale ("days").

STTI°KL 9/9

SEW Proceedings 313 SEL-94-006

SEW Proceedings 314 SEL-94-006

N95- 31252

Profile of Software Engineering Within the
National Aeronautics and Space Administration (NASA)

19th Annual Software Engineering Workshop

Craig C. Sinclair, Science Applications International Corporation (SAIC)
Kellyann F. Jeletic, NASA/Goddard Space Flight Center (GSFC)

ABSTRACT

This paper presents findings of baselining activities being performed to characterize
software practices within the National Aeronautics and Space Administration. It
describes how such baseline findings might be used to focus software process

improvement activities. Finally, based on the findings to date, it presents specific
recommendations in focusing future NASA software process improvement efforts.
NOTE: The findings presented in this paper are based on data gathered and
analyzed to date. As such, the quantitative data presented in this paper are

preliminary in nature.

BACKGROUND

The NASA Software Engineering Program was established by the Office of Safety and Mission
Assurance (Code Q) at NASA Headquarters in 1991 to focus on the increasingly large and
important role of software within NASA. The primary goal of this program is to establish and
implement a mechanism through which long-term, evolutionary software process improvement is
instilled throughout the Agency.

NASA's Software Engineering Program embraces a three-phase approach to continuous software

process improvement. The first and most crucial phase is Understanding. In this phase, an
organization baselines its current software practices by characterizing the software product (e.g.,
size, cost, error rates) and the software processes (e.g., standards used, lifecycle followed,

methodologies employed). During the Understanding phase, models are developed that
characterize the organization's software development or maintenance process. Models are
mathematical relationships that can be used to predict cost, schedule, defects, etc. Examples are the

relationships between effort, code size, and productivity or the relationship between schedule
duration and staff months. This in-depth understanding of software practices is gained within the
context of a specific software domain and must precede any proposed change. In the second phase,
Assessing, a software improvement goal is identified. Based on the specific local organizational
goal, a process change is introduced and its impact to the software process and product is measured
and analyzed. The results of the Assessing phase are then compared back to the baseline developed
during the Understanding phase. In the third phase, Packaging, experiences gained and lessons
learned are packaged and infused back into the organization for use on ongoing and subsequent
projects. Forms of packaging typically include standards, tools, training, etc. This three-phase
software process improvement approach (Figure 1) is iterative and continuous.

The importance of the Understanding phase cannot be emphasized enough. Before an organization
can introduce a change, it must first establish a baseline with which to compare the measured results
of the change. This baseline must be domain-specific and the software goals of the organization
must be clearly understood. Continual baselining is necessary not only because people, technology,
and activities change, but also because identifying, designing, implementing, and measuring any
change requires an in-depth understanding and monitoring of the particular process on which the
change is focused. This implies that understanding and change are closely coupled, necessarily
iterative, and never-ending. Continual, ongoing understanding and incremental change underlie any

process improvement activity.

SEW Proceedings

PRECEDIP_G PAGE E_.AN,IINOT i:_Li,.;;-O

315
SEL-94-006

_ PACKAGE
l/ R, _ I Captureimprovedtechniquesas a part of

_ ' = I modeledprocess
I e.g., Adoptinspectionsintodevelopmentstandard

_II_ASSESS I Developinspectionstrainingprogram
mprovement . .

/ ,r_ JDetern_ne thetmpactofsomechangs
• I [eg, Doesobject-orienteddesignproducemorereusablecode?

UNDERSTAND] Doinspectionsresultin lowererrorrates?

Builda baselineof processand products
e.g., Whatdevelopmenttechniquesareused?Whatistheunitcostofsoftware?

Whattypesoferromaremostcommon?Howmuchreuseoccurs?

i ti ""Continual mprovementover me ,..

Figure 1 ThreePhase Approachto Software Process Improvement

This paper addresses the Understanding phase, that is, the baselining of NASA software. Since the
baselining activities focus on a global organizational level, that is, NASA as a whole, the difference
between applying the process improvement approach at the global level rather than at a local
organizational level must first be addressed.

SOFTWARE PROCESS IMPROVEMENT AT A GLOBAL LEVEL

The steps in the software process improvement approach are applied differently at the global and
local organizational levels. Figure 2 illustrates the differences between the local and global

approaches. The Understanding phase is predominantly the same at both levels; basic
characteristics of software process and product are captured. At a local level, models are also
developed, e.g., cost and reliability models, to help engineer the process on ongoing and future
projects. At a global organizational level, models can only be very general relationships, such as the
percentage of application software in each of the identified software domains of an organization.

_- PACKAGE
ITERATE ,- .

/ [. Incorporazeprocessimprovemams

//,fI_SSESS L(eg, _ documentstraining)

// Experimental
/ / * Identifyprocesschange

/ / * _ processchange
.]. / . Measureimpact;compareresultstobaseline
• I . Evaluateprocesschange
UNDERSTAND • Recommendationonchange

. Characterizeprocess
• Characterizeproduct
• Developmodels(e.g.,defects)

Incorporateprocessimprovements
(eg., _ training)

Analytical
Identifyprocesschange

effectsof change
Measureimpact
Evaluateeffectof change
Recommendationonchange

Characterizeprocess
Characterizeproduct
Developmodels(e.g.,applicationdomins

Figure2 Localversus Global Software Process Improvement Approach

It is in the Assessing phase where most differences occur. At the local level, the Assessing phase is
experimental in nature. Specific technologies are introduced to try to attain some local goal (e.g.,
inspections might be introduced to reduce error rates). The results of these experiments are then
compared to the baseline from the Understanding phase to determine what impact the change has
had. At a global level, the Assessing phase is analytical rather than experimental. Process changes
are identified and the effects of the change(s) are analyzed and evaluated. Recommendations are
then made at an organizational level. For example, a potential process change is identified such as
code reuse. Analysis and evaluation of the effects of increased reuse in an organization is
accomplished by determining which software domains would benefit from reuse, measuring via

SEW Proceedings 316 SEL-94-O06

survey the amount of reuse that currently takes place in those domains, and projecting the potential
development time and cost savings that could be achieved by instituting a focused reuse program.
Finally, specific recommendations are developed for the organization that stimulate the local

implementation of code reuse.

The third phase, Packaging, is also similar at both levels. Changes that result in identified
improvements are packaged and infused back into the organization's process. There are
differences in the types of packages produced at both levels. At the local level packages might
include experience-driven standards, guidebooks, training, and tools. Packages at the global level
might include a high level training plan or a policy requiring software process improvement
activities for various software domains and organizational levels. The global approach is intended
to stimulate local implementations so each individual organization can attain its local goals and

improve its products and processes. NASA will benefit, as a whole, as local benefits are attained in
software organizations throughout the Agency.

BASELINING NASA'S SOFTWARE

As the critical first step toward continual software process improvement, NASA has recently begun
the Understanding phase and has baselined its software products and processes. The Mission
Operations and Data Systems Directorate (Code 500) at the Goddard Space Flight Center (GSFC)
was first characterized to prototype and refine the steps necessary to construct such a baseline

[Reference 1]. With the experiences gained during the Code 500 efforts, a single NASA Field
Center, GSFC, was then baselined [Reference 2]. Lessons learned were again factored into the pro-

cess and, finally, NASA as a whole was baselined to determine current Agency software practices.
Since the NASA-wide data collection and analysis are not yet complete, this paper presents findings
to date. The final NASA baseline, the Profile of Software at the National Aeronautics and Space
Administration, is nearly complete and is targeted for completion in early 1995 [Reference 3].

During fiscal year 1993 (FY93), NASA software and software engineering practices were examined
to gain a basic understanding of the Agency's software products and processes. The objective of
the NASA baseline was to understand the Agency's software and software processes. There is no

intent to judge right or wrong; it merely presents a snapshot in time of software within NASA. The
baseline includes all software developed or maintained by NASA civil servants or under contract to
NASA. It does not include commercial-off-the-shelf (COTS) software such as operating systems,
network software, or database management systems. It also does not include COTS application

packages such as word processing packages, spreadsheet software, graphics packages, or other
similar tools hosted on workstations and personal computers.

To produce the baseline, software product and process data were gathered from seven NASA Field
Centers I and the Jet Propulsion Laboratory. Data and insight gathering were performed using four

approaches:

(1) Surveys administered in person to a representative set of civil servants and

support contractors from across the NASA community

(2) Roundtable discussions consisting of a structured group interview process

(3) One-on-one interviews with management and technical personnel

(4) Reviews of organizational and project data (e.g., budgets, policies, software
process development documentation)

Reference 4 provides additional details on the baselining approach.

1Data were collected from the following NASA Field Centers: Ames Research Center, GSFC, Johnson Space Center,
Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center

SEW Proceedings 31 7 SEL-94-O06

The remainder of this paper focuses on the findings of the NASA baseline and how they might be
used. The baseline will help NASA management understand the scope and extent of software work
within the Agency. It will also assist managers in focusing future resources to improve NASA's

software products and processes. The baseline can also be assessed to identify candidate areas for
improvement. As the baseline f'mdings are presented, examples are given as to how they might be
used. Finally, recommendations are proposed for focusing future process improvement efforts.

NASA'S SOFTWARE PRODUCT BASELINE

This section presents results from the analyses performed on the product data gathered throughout
the NASA Centers. This section summarizes a selected set of the software product baseline data

that can be found in the draft Profile of Software at the National Aeronautics and Space
Administration [Reference 3]. Examples of additional software product data detailed in the docu-
ment include the amount of operational software per NASA Field Center, the size of the software
domains at the Centers, allocation of resources to the life-cycle phases, and other measures.

The software product baseline characterizes the attributes of the software itself. This paper
addresses several questions pertaining to NASA's software product:

• What classes of software exist?
• How much software exists?
• How much of NASA's resources are invested in software?

• What languages are used?

These product characteristics are discussed below.

SOFTWARE CLASSES

Six classes (domains) of software were identified throughout NASA. It was necessary to define
separate software domains within NASA, since the development and maintenance practices, the
management approach, and the purposes of the software in various domains are distinctly different.
Hence the software improvement goals for varying domains are generally different The definitions
of the six NASA software domains are given below.

• Flight�embedded -- embedded software for on-board spacecraft or aircraft or ground
command and control applications (e.g., robotics)

• Mission ground support -- software usually not embedded; operates on the ground in
preparation for or in direct support of space and aircraft flight missions (e.g., flight dynamics,
control center, command processing software, and software for crew or controller training)

• General support -- software that supports the development of flight and ground
operational software (e.g., engineering models, simulations, engineering analyses,
prototypes, wind tunnel analyses, test aids, and tools)

• Science analysis -- software used for science product generation, processing and

handling of ancillary data, science data archiving, and general science analysis

• Research -- software supporting various studies in software, systems, engineering,
management, and/or assurance (e.g., software tools, prototyping, models, environments,

and new techniques)

• Administrative information resources management (IRM) -- software supporting
adminisWative applications (e.g., personnel, payroll, and benefits software)

Figure 3 shows the distribution of these domains for operational software. Mission ground sup-
port and administrative/lRM software were found to be the largest and most prevalent software do-
mains within NASA, accounting for over 60 percent of all NASA software. General support soft-
ware was the next largest software domain, accounting for almost 20 percent of NASA software.

The science analysis, research, and flight/embedded software domains were much smaller in size.

SEW Proceedings 318
SEL-94-O06

Research(10 MSLOC)___Flight/Ernbedded(12MSLOC)

AdministratJve/lRM__ !

(52MSLOC) MissionGround

Support
(70MSLOC)

Iooj_ _j-j

ScienceAnalysis _

(20MSLOC) GeneralSupport
(36MSLOC) MSLOC=mimonsour=,Iresofcode

Figure 3 - Operational Software by Domain

How might such baseline information be used? The largest domains could indicate where software

improvement efforts might most effectively be applied.

SOFTWARE QUANTITIES

During the baseline period, about 200 million source lines of code (SLOC) were in operational use.
During that same period, NASA developed about 6 million SLOC (MSLOC). In terms of lines of

operational code, almost 122 million SLOC within NASA is mission ground support (70 MSLOC)
software and administrative/IRM (52 MSLOC) software. As mentioned in the previous section,

focusing an effective software improvement program in these software domains has the potential of
reaping enormous cost benefits. This type of data can be used to assist NASA management in
seeing where they should focus their resources to improve software products and processes.

SOFTWARE RESOURCES

Figures 4 and 5 show the amount of resources invested in software in dollars and manpower, re-
spectively. As these figures indicate, NASA has a significant investment in software. More than $1
billion of NASA's total $14 billion budget is spent on the development and maintenance of soft-
ware (Figure 4). Most of NASA's software budget is spent on contractors, nearly 80 percent of
NASA's software work is contracted out to industry. Software staffing accounted for more than 10

percent of NASA's total work force (Figure 5). This includes all civil servants and conU'actors who
spend the majority of their time managing, developing, verifying, maintaining, and/or assuring
software. These data can be used to help senior managers at NASA to understand the scope and
extent of NASA's investment of manpower and budget in software.

$1 billion
software

costs

Figure4- Software VersusTotal Costs

Softwarepersonnel
8,300

Figure 5- Software Versus Total Staffing

SEW Proceedings 31 9 SEL-94-006

SOFTWARE LANGUAGES

Figure 6 compares the preferences in software languages being used in current development efforts
across NASA with those used in existing software now being maintained. Several trends are

apparent. FORTRAN usage has remained relatively constant. Usage of both Cobol and other
languages (e.g., Assembler, Jovial, Pascal), has decreased significantly, presumably replaced by the
large increase in C/C ++ usage. The usage of both C/C ++ and Ada have increased dramatically.
This implies that there is a significant trend toward C/C ++ across NASA. Another trend is the lack
of substantial movement toward Ada despite a decade of attention within NASA and advocacy from

the Department of Defense. Although Ada use has increased, the magnitude of the increase is small
compared to the intensity of past advocacy. It appears that Ada is not "catching on" within NASA
culture and that C/C +* are becoming the languages of choice.

i 24 m , i ,

<1 _
Operationalsoftware []
Underdevelopment []

Figure 6. Language Preferences and Trends

Data such as the language preferences and trends might be used to focus training activities, not only
toward language training, but also toward methodologies appropriate to specific languages.

NASA'S SOFTWARE PROCESS BASELINE

This section presents results from the analyses performed on the process data gathered throughout
the NASA Centers. It summarizes a selected set of the software process baseline data that can be
found in Reference 3. Examples of additional software process data detailed in the document
include management experience, documentation standards, development tools, training, and other

processes.

The software process baseline characterizes the attributes of the software practices. This paper
addresses several questions pertaining to NASA's software process:

• What software standards are used and are helpful?

• How are requirements managed?.
• How much and what type of reuse occurs?
• What are the Agency's practices with respect to software metrics (measures)?
• what development methodologies are used?

These process characteristics are discussed below.

SOFTWARE STANDARDS

A software standard refers to any mutually agreed upon specification for a software product or a

software process within a software development or maintenance project. Examples of software
standards related to software products are coding standards, language standards, and error rate

specifications. Examples of software standards related to software processes are specifications of

SEW Proceedings 320 SEL-94-O06

software development standards, software configuration standards, and software methodologies.
Almost all the written, baselined software standards within NASA are in the form of software

development standards. This is a type of process standard that consists of one or more of the
following: software life-cycle phases and their activities, software review requirements, and
document format and content requirements. Though software standards exist at various levels
within NASA organizations, there is relative little usage of software standards by NASA personnel.
On the contrary, standards usage is widespread among NASA's support contractors, which is

significant considering that they are responsible for nearly 80 percent of NASA's software work.

One resounding sentiment throughout the Agency was that the most used and useful software
standards are typically defined at the project level. Software standards defined and imposed from

higher organizational levels were widely ignored. Another observation supported by the process
data was that the awareness of software standards baselined at higher organizational levels was

relatively low. In fact, there was a clear trend that indicated that the higher up in the organizational
chain the standard is baselined, the less likely the project software staff know of its existence.

When software standards do exist, they do not enjoy a high level of use and do not appear to be

used by the majority within an organization. This observation appeared to be true at all
organizational levels. However, when software standards are used, they are generally perceived as
helpful. So even though software standards do not have an overall high level of use, those that do
use them generally perceive them to be helpful. Finally, even when software standards exist and are
used, they are not enforced by the organizational level at which they are baselined.

This information can be used to provide specific focus in developing and facilitating the effective
use of software standards within the Agency.

REQUIREMENTS MANAGEMENT

Software requirements represent an agreement between NASA and its contractors as to what will be
produced and how it will perform. These "agreements" form the basis for the software size,
schedule, budget, and staffing levels. If the software req::_rcments are not clearly defined before the
onset of design, schedule slips, code growth, and cost overruns are often the result. Management of
software requirements is especially important for NASA civil servants since over 80 percent of the
software projects at NASA are developed or maintained by conlractors.

A widespread finding throughout NASA was that unstable requirements were perceived as the
major cause of software schedule slips, cost overruns, and code size growth problems. Unstable
requirements were interpreted to mean not only changing requirements, but also missing and/or
misinterpreted requirements. A related finding was that most of the NASA engineers and managers
surveyed claimed that software requirements were generally not stable by the onset of preliminary
design.

SOFTWARE REUSE

Software reuse is the establishment, population, and use of a repository of well-defined, thoroughly
tested software artifacts. Software artifacts that can be reused include not only code, but software
requirements specifications, designs, test plans, documentation standards, etc.

Throughout NASA, most focus on reuse is at the code level. On average, about 15 percent of code
is reused from one project to another, however, there is considerable variance in reuse levels
between Centers. The level of reuse was also observed to widely vary between projects within a

given Field Center. In NASA overall, there was little in the way of defined approaches for handling
software reuse.

SOFTWARE MEASUREMENT

Software measures are quantitative data that specify a set of characteristics about the software
product or its processes. Software measures can be used to aid in the management of software

SEW Proceedings 3 21 SEL-94-006

projects, help in the estimation of new projects, define and model an organization's software
characteristics, and guide improvements of software and its processes.

The collection and utilization of software measures varied from non-existent to a few robust

programs. Overall, relatively few NASA organizations collected software measures. Of those
organizations surveyed that did collect software measures, less than half used the data to analyze
and provide information back to the project. Overall, there was little evidence of the collection and
use of measures throughout NASA.

DEVELOPMENT METHODOLOGIES

Figure 7 shows the relative awareness, training, and usage of several software development
methodologies. Since structured analysis and Computer-Aided Software Engineering (CASE)
tools have been around for a long time, it is not surprising that they are well known and widely
used. There is a lot of awareness about object-oriented technologies, but usage is moderate. Some

newer technologies, e.g., Cleanroom, are much less known and used. With the exception of CASE,
one can also see a rather close link between the level of training and the level of usage. CASE is not

a surprising exception since, as with other tools, people tend to jump in and use them rather than
take courses or delve through documentation. One might surmise by the link with training and

usage that NASA may be investing in "just in time" training.

StructuredAnalysis CASE Object-oriented InformationHidim FormalMethods Cleanroom

I'_ I _I //'/.I

I [] Awareness[] TraJning[] Use

Figure 7. Development Methodologies

APPLYING THE FINDINGS

As previously indicated, the NASA baseline can be used to identify candidate areas for improve-
ment and to develop specific recommendations for implementation of software improvement within
NASA. These software improvement recommendations must not consist of rigid NASA-wide
requirements imposed from above onto NASA projects. Rather, the software improvement
recommendations at the higher levels of organization within NASA need to be top level policy and
funding assistance, designed to stimulate and facilitate the development of local implementations of
software improvement methods. If the goal is to bring software improvement into the projects, the
projects must be given proper incentives and allowed to tailor software improvement implementation
to their specific goals and domains. The following are two examples of how the NASA software
baseline findings could be assessed and utilized.

Software Reuse
Recall that, on average, about 15 percent of the code is reused from one project to another.
Throughout NASA, there is little or no emphasis on reusing anything but code. Overall,
there are few defined approaches to reuse and only a few NASA organizations utilize
software reuse as part of their software development process.

There are some NASA organizations who focus on more than just the reuse of code (e.g.,
reuse of code and architecture). These organizations have seen 75 to 80 percent reductions
in both the time and cost to develop software. NASA might be able to leverage these few

robust programs to assist the adoption of software reuse by other NASA organizations.

SEW Proceedings 322
SEL-94-O06

Applying proven NASA-developed solutions to the same software domains of other NASA
organizations will give a much higher probability for success within the NASA culture.

Software Measurement
Recall that there is little evidence of collection and use of software measures throughout
NASA. Collection and use ranged from non-existent to a few robust programs.

Software measurement is critical for project management and for the success of any

software process improvement effort. Without measurement, change and improvement
cannot be demonstrated. Here also, NASA might be able to leverage the few robust

measurement programs to assist in the adoption of measurement by other NASA

organizations. As in the case of reuse, applying domain-consistent, NASA-developed
solutions to projects has the best chance for acceptance in the NASA culture.

In both examples, NASA and Center level policies could be put in place to encourage the reuse and
software measurement programs by the projects. The existing positive examples of projects using
reuse and software measurement could be packaged in a way that could be useful for other projects.
In some cases, appropriate NASA and Center funding assistance could be applied to get the

programs started. The projects themselves should then be responsible for setting their own project-
specific goals, tailoring the packaged software improvement processes, and implementing them in a

way that contributes positively to their projects.

Other baseline findings can be examined to extract similar observations and to make
recommendations for improvement. In analyzing the baseline, software domains and organizational
levels must be considered. First, consider software domains. Examining reuse in domains that

perform repeated tasks, e.g., mission ground support software, would probably be more beneficial
than examining reuse in the area of research software where most software is one-of-a-kind.
Similarly, research software might not require much in the area of software measurement. When
analyzing the baseline, identifying areas for improvement, applying the findings, and implementing
changes, software domains must be considered.

Organizational levels also play a key role in analyzing and applying the findings. Higher organiza-
tional levels (e.g., NASA and Center level) should focus on encouraging local implementations via

policy and funding assistance. Local projects should determine their own goals and devise an
implementation of the software improvement area that fits their experience and domains.

RECOMMENDATIONS

Based on the findings to date, some recommendations can be made. First, since a significant

portion of NASA's resources (both manpower and budget) is spent on software, each NASA
Center and significant software organization should establish a software baseline.

Second, since project level standards are the most used and useful, NASA should focus on project
and domain level standards, NOT on NASA-level standards.

Finally, NASA should assess the existing baseline to identify areas for software improvement.
Based on the assessment, recommendations should be developed. At the very least, these

recommendations should focus on software reuse and software measurement.

SUMMARY

This initial baseline of NASA software provides the answers to basic questions about NASA's

software practices. It can provide insight for NASA to focus on potential areas of improvement. It
also provides a snapshot in time to be used for future comparisons as changes are introduced and
NASA's software process evolves.

SEW Proceedings 32 3 SEL-94-006

This baseline is a first step toward continual software process improvement. It also must be the
first of many baselines. As the Agency's process evolves, this baseline must be reexamined and

updated to accurately characterize NASA's software practices at that point in time. Maintaining a
baseline is critical to retain an ongoing understanding of NASA's software process and products.
Without such understanding, improvements cannot be identified and continual software process
improvement cannot be attained.

REFERENCES

1. Profile of Software Within Code 500 at the Goddard Space Flight Center, Hall, D. and
McGarry, F., NASA-RPT-001-94, April 1994.

2. Profile of Software at the Goddard Space Flight Center, Hall, D., Sinclair, C., and McGarry, F.,
NASA-RPT-002-94, June 1994.

3. Profile of Software Within the National Aeronautics and Space Administration, Hall, D.,

Sinclair, C., Siegel, B., and Pajerski, R., NASA-RPT-xxx-95, Draft, January 1995.

4. Profile of NASA Software Engineering: Lessons Learned from Building the Baseline, Hall, D.
and McGarry, F., Eighteenth Annual Software Engineering Workshop, SEL-93-003,
December 1993.

ACRONYMS AND ABBREVIA_ONS

CASE

Code 500

Code Q

COTS

FY93

GSFC

IRM

MSLOC

NASA

SAIC

SLOC

Computer-Aided Software Engineering

Mission Operations and Data Systems Directorate (at GSFC)

Office of Safety and Mission Assurance (at NASA/Headquarters)

commercial-off-the-shelf

fiscal year 1993

Goddard Space Flight Center

Information Resources Management

million source lines of code

National Aeronautics and Space Administration

Science Applications International Corporation

source lines of code

SEW Proceedings 324 SEL-94-006

Profile of Software
Engineering Within NASA

Craig C. Sinclair, SAIC
Kellyann Jeletic, NASA/GSFC

19th Annual Software Engineering Workshop
12/1/94

GOALS

Overall Goal:

° Apply Software Engineering Laboratory (SEL) software
process improvement approach to NASA as a whole

* Instill continual software process improvement throughout
NASA

• Build specific recommendations for software process
improvement within NASA

Study Goal:

• Establish the basefine of software and software engineering
practices throughout NASA

Profile of Software Engineering Within NASA

SEL-94-006
SEW Proceedings 3 2 5

PURPOSE OF THE BASELINE

• To help NASA management understand the scope and
extent of the software work within NASA

• To assist NASA management to see where they should
focus future $$$ to improve software products and
processes

• To assess the baseline for identification of candidate
areas for software improvement

Profile of Software Engineering Within NASA 2

APPROACH

SEL Software Process Improvement Approach:

1) Understand (Baseline)

2) Assess

3) Package

There are some differences when applying the SEL
approach to a global organizational level compared to a
local organizational level

Profile of Software Engineering Within NASA

SEW Proceedings 326 SEL-94-006

APPROACH- LOCAL VS. GLOBAL

i--- PACKAGE

y Incorporate process improvements
ITERATE (e.g., standards documents,

ASSESS training)

Experimental
/ / Identifyprocesschange

/ •Implement process change

•Measure impact," compare results to baseline
I _ • Evaluate process change

UNDERSTAND .Recommendation on change

• Characterize process

• Characterize product

• Develop models
(e.g.,defects)

• Incorporateprocess improvements
(e.g.,_ training)

iAnalytical
,• Identifyprocess change

• A___LI_ effects of change

• Measure impact

• Evaluate effect of change

• Recommendation on change

• Characterize process

• Characterize product

• Develop models
(e,g., application domain)

I Local ---> ExperimentalGlobal ---> Analytical

Profile of Software Engineering Within NASA

ESTABLISH THE BASELINE

Captured snapshot of FY93 attributes of:
- NASA software (the product)
- NASA's software engineering practices (the process)

Data gathering methodology
- Surveys, administered in person
- Roundtable discussions
- One on one interviews

- Review of project documentation

Basic objective is to understand, not to judge right or wrong

• Next few charts describe the NASA Baseline

• Then we show how the baseline might be used

Profile of Software Engineering Within NASA

SEW Proceedings 327 SEL-94-006

NASA SOFTWARE
PRODUCT CHARA CTERISTICS

Amount of Software and Software Domains

Other (Simulation, Flight/
research, etc.) Embedded

Ad_nL_raWe/
IRM

General Support

I TotalNASA 1
rationalcode:
00 MSLOC

M_on
Ground
Support

I Largest software domains indicate where /software improvement efforts could be focused

Profile of Software Engineering Within NASA 6

NASA SOFTWARE
PRODUCT CHARACTERISTICS

Software Staffing and Cost

More than 10% of NASA's 80,000 civilservants
and support col_ctors were involved _ $1 Billion

software the ' of the time Software costs

About80% of NASA's softwarework

was contractedto indus_

I NASA has a significant investment of itmanpower and budget in software I

Profile of Software Engineering Within NASA

SEW Proceedings 328 SEL-94-006

NASA SOFTWARE
PRODUCT CHARACTERISTICS

Language Preferences and Trends

FORTRAN Cobol C/C++ Ada Other

Operational software []

Under development •

Findings may be used to focus training activities

Profile of Software Engineering Within NASA

NASA SOFTWARE
PROCESS CHARA CTERISTICS

• Software Standards
-Project level were found to be most used and useful

-Relative little usage by NASA personnel; widespread among contractors

• Requirements Management
-Unstable requirements are the biggest cause of schedule, budget,
and code size growth problems

-In general, requirements are not stable by preliminary design

° Software Reuse
-On average, about 15% of code is reused from one NASA project to another

-Most focus is on code reuse; considerable variance in levels between Centers

Software Metrics
-Little evidence of collection and use throughout NASA as a whole

-Collection and use varied from non-existent to a few robust programs

Profile of Software Engineering Within NASA 9

SEW Proceedings 329 SEL-94-006

NASA SOFTWARE
PROCESS CHARA CTERISTICS

Development Methodologies

High

Med

Low

StTuctured Object- InformalJon Formal
Ana_sis CASE oriented Hiding Methods Cleanroom

[] Awareness

• Training
[] Use

NASA may be investing in "just in time" training

Profile of Software Engineering Within NASA 10

HOW BASELINE CAN BE USED

• To assess the baseline for identification of candidate
areas for software improvement

• To develop specific recommendations for
implementation of software improvement within NASA

• To stimulate local implementation of software
improvement recommendations (bottom-up)

Profile of Software Engineering Within NASA 11

SEW Proceedings 330 SEL-94-006

ASSESSING THE BASELINE
EXAMPLE 1

Measurement

• Findings

- Collection and use varied from non-existent to a
few robust programs

- Little evidence of collection and use throughout NASA
as a whole

• Observations

- Software metrics need to be used for project management
and to determine success of software improvement efforts

- NASA could leverage the few robust metrics programs to
assist the adoption of metrics by other NASA organizations

Profile of Software Engineering Within NASA 12

ASSESSING THE BASELINE
EXAMPLE 2

Reuse

• Findings

- On average, about 15% of code is reused from
one project to another

- A few NASA organizations utilize software reuse as
a normal part of their software development process

- Overall, there were few defined approaches to reuse

° Observations

- Organizations with software reuse (architecture and code) have
macle 75 - 80% reductions in cycle time and development cost

- NASA could leverage the few robust programs to assist the
adoption of software reuse by other NASA organizations

Profile of Software Engineering Within NASA 13

SEW Proceedings 331 SEL-94-O06

APPLYING THE FINDINGS

• Findings must be analyzed in terms of software domains

- Science analysis software may not require
much in the way of a metrics program

- Software reuse may be most useful in domains
that perform repeated tasks, such as mission
ground support versus research software

• Findings must be analyzed in terms of the organizational levels

- NASA-wide: top level policies
- Center-wide: center level policies
- Local organizations: implementation

Profile of Software Engineering Within NASA 14

BASELINING NASA SOFTWARE
RECOMMENDATIONS

• Each NASA Center and significant organization should
baseline, since more than 10% of NASA's budget is spent
on software related activities.

• NASA should focus on project level and domain
standards, NOT on NASA-level standards, since project
standards were found to be the most used and useful.

• NASA should assess the existing baseline to identify
areas for software improvement. Recommendations
should be developed, including at least:

Software reuse
Software measurement

Profile of Software Engineering Within NASA 15

SEW Proceedings 332 SEL-94-006

Appendix A: Workshop Attendees <.,. ,. j

SEW Proceedings 333 SEL-94-O06

SEW Proceedings 334 SEL-94-006

Aalto, Julm-Markus, Nokia
Telecommunications

Aaronson, Kenneth,
Computer Sciences
Corporation

Abrahamson, Sham, HQ
AFC4A

Amad, Shahla, Hughes STX

Corp.
Angevine, Jim, ALTA

Systems, Inc.
Armentrout, Terry, Computer

Sciences Corporation
Avetill, Edward L., Edward

AveriU & Associates

Ayers, Everett, ARINC
Research Corp.

Bailey, John, Software

Metrics, Inc.
Barski, Renata M.,

AlliedSignal Technical
Services Corp.

Basili, Victor R., University

of Ma_land
Bassnmn, Mitchell J.,

Computer Sciences
Corporation

Beall, Shelley, Social

Security Administration
Bean, Paul S., DSD Labs
Beiersclumtt, Michael J.,

Loral AeroSys
Beifeld, David, Onisys Corp.
Bellamy, David, MITRE

Corp.
Belvins, Brian E., Naval

Surface Warfare Cemer

Bender, Jeff, University of
M,a_ytana

Beswick, Charlie A., Jet
Propulsion Laboratory

Blagmon, Lowell E., Naval
Center For Cost Analysis

Blankenship, Donald D.,
U.S. Air Force

Biatt, Carol, U.S. Census
Bureau

Bobowiec, Paul W.,
COMPTEK Federal

Systems
Bolm, lisa, SECON
Boland, Dillard, Computer

Sciences Corporation
Boloix, Germinal, Ecole

Polytcchniquc de Montreal
Bond, Jack, DoD

Borger, Mark W., Software
Engineering Institute

Borkowsld, Karen, SECON
Bowers, Allan, Loral

AeroSys

Boyd, Andrew, U.S. Air
Force

Bozoki,George J.,Lockheed

Missiles & Space Co., Inc.
Branson, Jim, ARl_ri.can

Systems Corp.
Bredeson, Mimi, Space

Telescope Science Institute
Britt, Joan J., MITRE Corp.
Brown, Cindy, Computer

Sciences Corporation
Brown, Richard A., Boeing

Information Services

Bunch, Aleda, Social
Security Administration

Burke, Karen, Loral Federal

Systems
Burkhart, Michael R.,liT

Research Institute

Burr, Carol, Computer
Sciences Corporation

Busby, Mary, Loral Federal
Systems Group

Busenmn, Bill, EER
Systems Corp.

Caldiera, Giauluigi,
University of Maryland

Callahan, Jack, NASA/WVU
IV&V Facility

Canfield, Roger A., DoD
Joint Spectrum Cemer

Carlin, Catherine M.,
Veterans Benefits
Admimstration

Carlisle, Candace,
NASAJGSFC

Carlson, Randall, NSWCDD
Carmichael, Kevin R.,

NASA/LeRC

Carmody, Corn L.,PRC,
Inc.

Cclcntano,AI, Social

SecurityAdministration

Ccntafont, Noreen,DoE)

Chapman, Robert, EG&G
WASC, Inc.

Chen, Lily Y., AlliedSignal
Technical Services Corp.

Chiverella,Ron,

Pennsylvania Blue Shield
Chu, Richard, Loral AeroSys
Clamons, Jim, Hams Corp.

Clark, Carole A., Veterans
Benefits Administration

Clark, James D., Naval
Surface Warfare Cemer

Cochrane, Gail, TRW
Cohen, Judy, Jet Propulsion

Labommry
Condon, Steven E.,

Computer Sciences
Corporation

Cooke, Terrcnce, Eagle
Systems, Inc.

Coon, Richard W., Computer
Sciences Corporation

Corbin, Regina, Social
SecurityAdministration

Cover, Donna, Computer
Sciences Corporation

Cowan, Marcia, Loral

AemSys
Coyne, Edward J., SETA

Corp.
Cmwford, Art, Mantech

Services Corp.
Crowder, Grace, University

ofMaryland-BaltimoreCo.

Cuesta, Emesto, Computer
Sciences Corporation

Daku, Walter, Unisys Corp.

Daniele, Carl J.,
NASA/LeRC

Deutsch, Michael S., Hughes
Applied Info. Systems,
Inc.

Devasirvatham, Josiah,

CARDS/D.N. American

DiNunno, Donn, Computer
Sciences Corporation

Diaczun, Paul, Tidewater
Consultants, Inc.

Dickson, Charles H., USDA

Diskin, David H., Defense
Information Systems
Agency

Dixson, Paul E., Loral
AcroSys

Doland, Jerry T., Computer

SciencesCorporation
Dolphin, Leonard, ALTA

Systems, Inc.
Dormelly, Laurie M.,

AIIiedSignal Technical
ServicesCorp.

Dotscth, MargareL Computer
SciencesCorporation

Dowen, Andrew Z., Jet

Propulsion Laboratory

SEW Proceedings

PRECEDING PAOE BLANK NO]" F_L_._

335
SEL-94-006

Drake, Anthony M.,
Computer Sciences
Coq3oration

DuBard, James E., Computer
Sciences Corporation

Dudash, Ed, Naval Surface
Warfare Cenler

Duncan, Scott P.,
BELLCORE

Dyer, Michael, DYCON
Systems

Edelson, Robert, Jet

Propulsion Laboratory
Eielimann, David, University

of Houston-Clear Lake

Eiliott, Geoffzey, Raytheon
Engineers & Contractors

Ellis, Walter J., Software
Process & Metrics

Esker, Linda J., Computer
Sciences Corporation

Estep, Janq_s, VIFVHTC
Foundation

Ettom de Cesarc, Lnciano,
Omive_ity of Maryland

Evans, Calvin Wayne, DoD

Farrell-Presley, Mary Ann,
Applied Systems
Technology, Inc.

Fedor, Gregory A., ADF,
Inc.

Ferguson, Frances, Stanford
Telecommunications, Inc.

Fernandes, Vernon,
Computer Sciences
Corporation

Finley, Doug, Umsys Corp.
Hora, Jackie, Social Security

Administration

Flynn, Nick,Mantech
ServicesCorp.

Forsythc,Ron,

NASA/Wallops Flight

Facility
Frahm, Mary J., Computer
SciencesCorporation

Froehlich, Donna, liT
Research Institute

Futcher, Joseph M., Naval
Surface Warfare Cemer

Gaddis, John B.,
CARDS/DSD Laboratories

Gallagher, Barbara F., DoD

Gallo, AI, Umsys Corp.
Garazcr, Don

Garlick,Teri,Pennsylvania
Blue Shield

Getzen, Phil, DIA
Gill, David C., TECHSOFT,

Inc.

Gluck, Raymond M.,

FCDSSA NSWC PHI)
ECO

Godfrey, Sally,
NASA/GSFC

Golden, John R., Information
Technologies

Goon, Linda, QA Consultant
Gosnell, Arthur B.,U.S.

Army Missile Command
Gover, Ga_, Veterans

Benefits Admimstralion

Gmffnmn, Ira, Hughes STX
Corp.

Grar_, Vincc, Hughes STX
Corp.

Grant,Jr.,Ralph D.,New
Technology,Inc.

Greck Neill, Computer
Science,sCorporation

Green, David S., Computer
Sciences Corporation

Green, Leonard, DoD
Green, Scott, NASA/GSFC
Greene, James S., U.S. Air

Force

Gregory, Judith A.,
NASA/MSFC

Gregory, Shawna C., MITRE
Corp.

Griffin,Brenda,McDonnell

Douglas Space Systems
Co.

Gwennet, Lance, Systems
Research & Application
Corp.

Gwynn, Thomas R.,
Computer Sciences

Corporation

Haislip, William, U.S. Army
Hall, Angela, Computer

Sciences Corporation
Hall, Charley, SECON
Hall,Dana L.,SAIC
Hall,Ken R.,Computer

SciencesCorporation

Han, Cecilia, Jet Propulsion
Laboratory

Harmon, Nanci,
DISA/JIEQ/TBEC

Hanson, Pauline, US.
Census Bureau

Hams, Barbara A., USDA
Hartzler, Ellen

Heintzelman, Clinton L.,
U.S. Air Force

Heller, Gerard H., Computer
Sciences Corporation

Hendrzak, Gray, Booz, Allen
& Hamilton, Inc.

Hemy, Joel, East Tennessee

StateUniversity
Herbslcb,Jim,Software

Engineering Institute
Heuser, Wolfgang,

Daimlerbenz, Research

Higgins, Herman A., DoD
Hoffmann, Kenneth, Ryan

Computer Systems, Inc.
Holloway, Mel, Joint Warfare

Analysis Comer
Holmes, Barbara,CRM

Holmes, Joseph A.,IRS
Hopkins, CliffordR.,DoD

Hoppc, William C., U.S.
Army/ISSC

Howard, William H.,Umsys
Corp.

Hultgren, Ed, DoD
Hung, Chaw-Kwei, Jet

Propulsion Laboratory

Ingram,DarrylR., Maryland
Tcctrix,Inc.

Jefferson, Pat, IRS
Jeletic, Jim, NASA/GSFC
Jeletic, Kellyann,

NASAJGSFC

Johnson, Pat, NASA/GSFC

Johnson, Temp, Hughes-STX
Jones, Christopher C., lit

Research Institute

Jones, Linda J., TRW
Jones, Lori M., Tidewater

Consultants, Inc.
Jordan, Gary, Umsys Corp.
Jordano, Tony J., SAIC

Kalin,Jay, Loral AemSys

Karlsson, Even-Andre,
Q-tabs

Keeler, Kristi L., Computer
Sciences Corporation

Kelly, John C., Jet

Propulsion Laboratory
Kemp, Kathiyn M., Office of
Safety& Mission
Assurance

SEW Proceedings 3 3 6 SEL-94-O06

Kester, Rush W., DC
SIGAda

Kierk, Isabella K.,
NASA/JPL

Kim, Robert D., Computer
Sciences Corporation

Kim, Yong-Mi, University of
Maryland

Kisfler, David M., Computer
Sciences Corporation

Klein, Jr., Gerald A., QSS
Group, Inc.

Kleptin, Laurie, Unisys
Corp.

Knight, Colette A., NSWC
Knight, John C., University

of Virginia
Kontio, Jyrki, University of

MaryLand
Kotov, Alexei, Oregon

Graduate Institute
Kraft, Steve, NASA/GSFC
Kromsch, Mark, U.S. Census

Bureau
Kuhle, Sherry, Booz, Allen

& Hamilton
Kuhne, Fran, Social Security

Admimstration
Kushner, Todd R., CTA, Inc.
Kyser, F_, Nichols

Research Corp.

LaPorte, Claude Y., Oerlikon
Aerospace

Laitenberger, 0liver
Lamia, Walter, Software

Engineering Institute
Landis, Linda C., Computer

Sciences Corporation
Lane, Allan C., AlliedSignal

Technical Services Corp.
Langston, James H.,

Computer Sciences
Corporation

Lawrence, Raymond L.,
Loral AemSys

Lay, Barbara N., Motorola,
Inc.

Lehman, Meir M., Imperial
College of Science

Levesque, Michael. Jet
Propulsion Laboratory

Levinson, Laurie H.,
NASA/I._RC

Levitt, Dave S., Computer
Sciences Corporation

Leydorf, Steven M., liT
Research Institute

Li, Rony, ORACLE
Libson, Ted, Boeing

Information Services, Inc.
Liebernmm_ Roxanne, U.S.

Census Bureau
Liebrecht, Paula L.,

Computer Sciences
Corporation

Lindsay, Scott, Government
Systems, Inc.

Lindsey,Brad,Irr Research
Institute

Lipsett, Bill, IRS
Liu, Jean C., Computer

Sciences Corporation
Livingston, Karen, IIT

Research Institme
Loesh, Bob E., Software

EngineeringSciences
Corporation

Lott, Christopher M.,
University of Kaiseflautem

Loy, Patrick H., Loy
Consulting, Inc.

Lubash, Steven, 1TF
Avionics

Lncas, Janice P., Financial
Management Service

Luczak, Ray W., Computer
Sciences Corporation

Lutz, Robyn R., Iowa State
University

Luu, Kequan, NASAJGSFC
Lynncs, Chris, NASA/GSFC
Lyons, Howarette P.,

AFPCA/GADB

Mabry, Bobbie L., DoD
Mahmud, Manff, IRS
Marciniak, John J., Kaman

Sciences Corporation
Marijarvi, Jukka, Nokia

Cellular Systems
Martinez, Bill, Loral Federal

Systems
Masters, Wen C., Jet

Propulsion Laboratory
Maury, Jesse, Omitmn, Inc.
Mazzola, Ray, Loral AeroSys
McCafferty, Brian, XonTech,

Inc.
McConncll, Andrew, ASSET
McCreary, Faith A., Jet

Propulsion Laboratory
McGarry, Frank E.,

Computer Sciences
Corporation

McGrane, Janet K., U.S.
Census Bureau

McHenry, Ron, Hughes STX
Corp.

McIlwraith, Isabel. IRS
McKay, Judith A., U.S.

Census Bureau
McNeill, Justin F., Jet

Propulsion Laboratory
McStmrry, Maureen,

Computer Sciences
Corporation

Melo, Walcelio L.,
University of Maryland

Mendonca, Manoel G.,
University of Maryland

Methia, Lmda, NASA/HQ
Miller, Dave, COMSO, Inc.
Mills, Marilyn K., Computer

Sciences Corporation
Minmnger, John R, DoD
Moleski, Laura, CRM
Moore, Paula, NOAA/SPOx3
Moore, Robin W., Air Force

Pentagon Conunumcation
Agency

Morgan, Pam, liT Research
Institute

Momsiewicz, Linda M.,
Computer Sciences
Corporation

Moseley, Patricia, DoD
Murphy, Thomas, Siemans

Corporate Research, Inc.
Myers, Philip I., Computer

Sciences Corporation

Narrow, Bernie, AlliedSignal
Technical Services Corp.

Neilan, Hester, Jet
Propulsion Laboratory

Nesflerode, Howard, Unisys
Corp.

Neuman, Harriet J., FAA
New, Ronald, NOAA
Nichols, Dan, CARDS/EWA
Nickerson, Brenda, Loral

Federal Systems Group
Niemela, Mary, SECON
Nokovich, Sandra L., U.S.

Census Bureau
Norcio, Tony F., University

of Maryland-Baltimore Co.
Norton, William F., FAA
Nuscnoff, Ron, Loral

Software Productivity Lab

SEW Proceedings 337 SEL-94-006

O_Brien, Robert L., Unisys
Corp.

O'Donnell, Chnrlie, ECA,
Inc.

O_Neill, Don, Software
_rtng Consultant

Obenski, Dave, DoD
Offer, Regina W.,

AFPCA/6ADB
Ohlmacher, Jane A., Social

Security Administration

Page, Gerald T., Computer
Sciences Corporation

Parlen, William, Pailen-
Johnson Asstmiates, Inc.

Pajerski, Rose, NASA/GSFC
Paletar, Teresa L., Naval Air

WarfareCemer

Panlilio-Yap, Nikki M,
Loral Federal Systems
Group

Parker-Gates, Linda, Software
Productivity Consortium

Passareui, Gennaro,
Consorzio SOFTIN

Patton, K. Kay, Computer
Sciences Corporation

Pavnica, Paul,
Treasury/Fincen

Peeples, Ron L., Intermetrics
Peny, Howard, Computer

Sciences Corporation
Petennan, David, Texas

Instruments
Petro, Jim, EWA, Inc.
Pettengill, Nathan, Martin

Marietta
Phan, Quyen, BTG, Inc.
Polk, B_ant Systems

Research & Applications
Corp.

Porter, Adam A., University
of Maryland

Porringer, David L., SAIC
Powers, Lany T., Unisys

Corp.
Pressley, Coretta T., DoD
Provenza, Clint, Booz, Allen

& Hamilton, Inc.

Quann, Eileen S., Fastrak
Traimng,Inc.

Radley, Charles, Raytheon-
EBASCO

Ramsey, Jack, Pennsylvania
Blue Shield

Raney, Dale L., TRW
Redding, John L., Defense

information Systems
Agency

Reeb, Jim, U.S. Army
MICOM

Reed, James J., Karman
Sciences Corporation

Regardie, Myma L.,
Computer Sciences
Corporation

Reitzel, Morris, DoD
Start, Master

Systems, Inc.
Riihinen, Jaakko, Nokia

Cellular Systems
Risser, Gray E., Veterans

Benefits Administration
Rizer, Stephani, NAWC-AD
Rodenas, Albe, ALTA

Systems, Inc.
Rohr, John A., Jet

Propulsion Laboratory
Rohrer, Amos M., SYSCON

Corp.
Rosenberg, Linda H., Unisys

Corp.
Roy, Dan M., STP&P
Russell, Wayne M., GTE
Rymer, John, Lora] Federal

Systems Group

Sabolisk George J., NASA
IV&V Facility

Saisi, Robert O., DSD
Lahoratorics, Inc.

Samadi, Shahm,
NASA/GSFC

Samuels, George, Social
Security Admimstration

Santiago,Richard,Jet
Propulsion Laborato_

Satyen, Urea D., MITRE
Corp.

Sawanobori, Tina, Computer
Sciences Corporation

Schellhase, Ronald J.,
Computer Sciences
Corporation

Schilling, Mark, Informatics,
Inc.

Schmidt, Evan, EWA
Schrom, Roberta, Hughes

Tr_n_ Inc.
Schuler, Pat M.,

NASA/LaRC

Schwartz, Benjamin L.,
Consultant

Schwar4 Hemy, NASA/KSC
Scott, Donna, PRC, Inc.
Scott, Rhonda M., Loral

Federal Systems Group
Seaman, Carolyn B.,

University of Maryland
Seiber, Dwayne, OAO Corp.
Seidewitz, Ed, NASA/GSFC
Sharma, Jagdish, NOAA
Sharma, Khem, Computer

Sciences Corporation
Sheclder, John D.,

AllicdSignal Technical
Services Corp.

Sheppard, Sylvia B.,
NASA/GSFC

Shi-Hung Hsueh, Blyan,
University of Maryland

Short, Cathy, IRS
Singer, Carl A.,BELLCORE
Six, RichardE., DoD
Siy, Harvey, University of

M_y_nd
Slaton, Gordon, U.S. Air

Force

Slonim, Jacob, Cenlxe for
Advanced Studies - IBM

Smith, Donald,
NASA/GSFC

Smith, George F., Space &
Naval Warfmre Systems
Command

Smith, Sharon, Loral Federal
Systems Group

Smith, Vivian A., FAA
Sohmer, Robert, RAM

EngineeringAssociates
Solomon, Carl A., Hughes-

STX

Sova, Don, NASA/HQ
Squire, Jon S., Westinghouse
Squires, Burton E., Orion

Scientific, Inc.
Ssemwogerere, Joe, Hughes

STX Corp.
Stamboulis, Peter, SECON
Stang, David, ADF, Inc.
Stark, Michael,
NASA/GSFC

Staub, Jane B., Tidewater
Consultants, Inc.

Steger, Warren L., Computer
Sciences Corporation

Steinberg, Sandee, Computer
Sciences Corporation

Stoddard, Robert W., Texas
Instnunems

SEW Proceedings 3 3 8 SEL-94-006

Summa, Robert L.,
Computer Sciences
Corporation

Smyani Jamin Tung, Angela,
AlliedSignal Technical
Services Corp.

Szulewsld, Paul A., C.S.
DraperLabs, Inc.

Tasaki, I_iji, NASA/GSFC
Tesoriero, Roseanne,

University of Maryland
Thomas, William, MITRE

Corp.
Thomason, Clarke, Pailen-

Johnson Associates, Inc.
Thompson, Sid, Unisys

Corp.
Thornton, Thomas H., Jet

Propulsion Laboratory
Tichenor, Charley, IRS
Trammell, Carmen J.,

University of Tennessee
Trible, Sue, GDE Systems,

Inc.
Turcheck, Susan, Loral

Federal Systems
Twombly, Mark A.,

Computer Based Systems,
Inc.

Ulely, Bradford T., MITRE
Corp.

Valdivia, Aaron, IITResearch
Institute

Valett,Jon,NASA/GSFC
Van Verth,PatricmB.,
CanisiusCollege

VanMeter, Charlene L., DoD
Vaughan, Frank R., RAM

EngineeringAssociates
Vause, David G., Loral

Federal Systems Group
Vernacchio,At,
NASA/GSFC

Vielunan,Ralph,
NASA/GSFC

Voigt,David,AtliedSignal
Technical Services Corp.

Wald,Lawrence,
NASA/LeRC

Waligom, Sharon R.,
Computer Sciences
Corporation

Wallace, Dolores, NIST
Waterman, RobertE., Unisys
Corp.

Webb, I-IatticR.,Naval
Surface Warfare Center

Weiss, Sandy L.,lIT
Research Institute

Wenneson, Gregory J.,
Sterling Software, Inc.

West, Tim, DIA
Weston, William N.,

NASA/GSFC
Weszka, Joan, Loral Federal

Systems Group
Wetherholt, Martha S.,

NASA/LeRC
WhiseBaBd, Tom, Social

Security Administration
White, Gilbert, NASA/HQ
Whittlesey, Raquel S., ADF,

Inc.

Wiggers, Grace E., Computer
Sciemes Corporation

Wika, Kevin G., University
ofVirginia

Wilkins, Lori H., New-Bold
Enterprises

Willey, Allan L., Motorola,
Inc.

Williams, Bonnie, Computer
Sciences Corporation

Wilson, RobertK., Jet
Propulsion Laborato_

Wmgfield, Charles G., DoD
Wolfish, Hannah K., Social

Security Administration
Wood, Dick, Computer

Sciemes Corporation
Wu, Sabina L., IIT Research

Institute

Yakstis, Louis C., Computer
Sciences Corporation

Yassini, Siamak, NASA/HQ
Yod_, Lee, Veterans Benefits

Administration
Youman, Charles,SETA

Corp.
Young,Andy,Young
EngineeringServices,Inc.

Young, Jeff, Lawrence
Livermore National Lab

Yu, Phil,TRW

Zaveler, Saul, U.S. Air Force
Zeitvogel, Barney, SECON
Zelkowitz, Marc, University

of Maryland
Zimet, Beth, Computer

Sciences Corporation

SEW Proceedings 3 3 9 SEL-94-006

SEW Proceedings
340 SEL-94-006

Appendix B: Standard Bibliography of SEL Literature

PRECEDING PAGE BLAr,!R NOT F_L._i;_D

SEW Proceedings 341
SEL-94-006

SEW Proceedings 342 SEL-94-006

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are organized into

two groups. The first group is composed of documents issued by the Software Engineering

Laboratory (SEL) during its research and development activities. The second group includes

materials that were published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,

September 1977

SEL-78-005, .Proceedings From the Third Summer Software Engineering Workshop, September

1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer

and C E. Velez, November 1978

SEL-78-007, Applicability of the Ravleigh Curve to the SEL Environment, T. E. Mapp,

December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Revision

3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory. Relationshtp Equations, K Freburger and

V. R. Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in

the Goddard Space Flight Center (GSFC) Code 580 Software Design Environment, C. E

Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop, November

1979

SEL-80-002, .Multi-Level Expression Design Language-Requirement Level (MEDL-R) System

Evaluation, W. J. Decker and C. E. Goorevich, May 1980

A Study of the Musa Reliability Model, A. M. Miller, November 1980

Proceedings From the Fifth Annual Software Engineering Workshop, November

SEL-80-005,

SEL-80-006,

1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software Systems,

J. F. Cook and F. E. McGarry, December 1980

PRECEDIRG PAGE BLANK NOT F_,'_:_O

SEW Proceedings 343
SEL-94-O06

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering, V. R.
Basili, 1980

SEL-81-011, Evaluating Software Development by Analysis of Change Data, D. M. Weiss,
November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of Medium

Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engineering

Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., August
1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Methodology for

Flight Dynamics, G. Page, F. E. McGarry, and D. N Card, June 1985

SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora, F. E.

McGarry, et al., June 1992

SEL-81-305SP1, Ada Developers' Supplement to the Recommended Approach, R. Kester and

L. Landis, November 1993

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page, D. N.

Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop, December
1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From the

Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description

(Revision/), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, M. G. Rohleder,

and F. E. McGarry, October 1983

SEL-82-1306, Annotated Bibliography of Software Engineering Laboratory Literature,

D. Kistler, J. Bristow, and D. Smith, November 1994

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, et

al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D. N. Card, F. E. McGarry,

G. Page, et al., March 1984

SEW Proceedings 344 SEL-94-006

SEL-86-005,

SEL-86-006,

1986

SEL-83-003, Collected Software Engineering Papers: Volume 11, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop, November

1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revision 1), C.

W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Laboratory

(SEL), W. W. Agresti, V. E Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop, November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis, F. E.

McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card, R. W. Selby, Jr.,

F. E McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray

Observatory Ada Development Team, R Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics, R

W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F. McGarry, and

C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop, December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development, R. Wood

and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M. Stark,

August 1986

SEL-86-003, Flight Dynamics System Software Development Environment ('FDS/SDE) Tutorial,

J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume 1V, November 1986

Measuring Software Design, D. N. Card et al., November 1986

Proceedings of the Eleventh Annual Software Engineering Workshop, December

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics

Development, S. Perry et al., March 1987

SEL-87-002, Ada ® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

Software

SEL-94-006
SEW Proceedings 345

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM), W. W. Agresti,
June 1987

SEL-87-004, Assessing the Ada® Design Process and Its Implications.- A Case Study,

S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop, December
1987

SEL-88-001, System Testing of a Production Ada Project." The GRODY Study, J. Seigle, L.
Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers." Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area. Design Phase

Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engmeering Workshop, November
1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study, S. Godfrey and
C Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area.

Implementation�Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F.

McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/Goddard,
C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop, November
1989

SEL-89-008, Proceedings of the Second NASA Ada Users'Symposium, November 1989

SEL-89-103, Software Management Environment (SME) Concepts and Architecture (Revision

1), R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-301, Software Engineering Laborary (SEL) Database Organization and User's Guide

(Revision 3), L. Morusiewicz, February 1995

SEL-90-001, Database Access Manager for the Software Engineering Laboratory (DAMSEL)

User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project

Description and Early Analysis, S. Green et al., March 1990

SEW Proceedings 346 SEL-94-006

SEL-92-002,

Database, G.

SEL-92-003,

SEL-92-004,

1992

SEL-90-003, A Study of the Portabibty of an Ada System m the Software Engmeering

Laboratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Rco' Observatory Dynamics Simulator m Ada (GRODY) Experiment

Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers. Volume _.7II, November 1990

SEL-90-006, Proceedings of the P_fteenth Annual Software Engineering _2)rkshop, November

199O

SEL-91-001, Software Engineering Laboratory (SEL) Relationshzps, Models. and Management

Rules, W Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report, E. W.

Booth and M. E Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model, S. Green,

November 199 !

SEL-91-005, Collected Software En_neering Papers: Volume IX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop, December

1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and b_formation Policy (Revision 1),

F. McGarry, August 199_

SEL-92-001, Software .¥1anagemen! Envzronment ?_':vI{_ b_stallation Guide, D. Kistler and

K. Jeletic, January 1992

Data Collection Procedures for the Software Eng:meermg Laboratoo: (SEL)

Heller, J Valett, and M. Wild, March 1992

Collected Software Engmeering Papers: Volume X, November 1992

Proceedings of the Seventeenth Annual Software Engineering Workshop, December

SEL-93-001, Collected Software Engmeering Papers. Volume X/, November 1993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie, M. Stark,

et al., November 1993

SEL-93-003,

1993

SEL-94-001, Software Management Environment (SME) Components and

R. Hendrick, D. Kistler, and J. Valett, February 1994

SEL-94-002, Software Measurement Guidebook, M. Bassman, F. McGarry,

July 1994

Proceedings of the Eighteenth Annual Software Engineering Workshop, December

Algorithms,

R. Pajerski,

SEL-94-006
SEW Proceedings 347

SEL-94-003, C Style Guide, J. Doland and J. Valett, August 1994

SEL-94-004, Collected Software Engineering Papers: Volume);71, November 1994

SEL-94-005, An Overview of the Software Engineering Laboratory, F. McGarry, G. Page, V.
Basili, et al., December 1994

SEL-94-006, Proceedings of the Nineteenth Annual Software Engineering Workshop, December
1994

SEL-RELATED LITERATURE

1°Abd-E1-Hafiz, S. K., V. R. Basili, and G. Caldiera, "Towards Automated Support for

Extraction of Reusable Components," Proceedings of the IEEE Conference on Software
Maintenance-1991 (CSM 91), October 1991

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Satellite

Simulation: A Case Study," Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N Card, et al., "Measuring Software Technology," Program

Transformation and Programming Environments. New York: Springer-Verlag, 1984

1Bailey, J. W., and V. R. Basili, "A Meta-Model for Software Development Resource

Expenditures," Proceedings of the Fifth International Conference on Software Engineering.
New York: IEEE Computer Society Press, 1981

8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development

Reusability," Proceedings of the Eighth Annual National Conference on Ada Technology, March
1990

l°Bailey, J. W., and V. R Basili, "The Software-Cycle Model for Re-Engineering and Reuse,"

Proceedings of the ACM Tri-Ada 91 Conference, October 1991

IBasili, V. R., "Models and Metrics for Software Management and Engineering," ASME

Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering. New

York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the First

Pan-Pacific Computer Conference, September 1985

7Basili, V. R, Maintenance = Reuse-Oriented Software Development, University of Maryland,

Technical Report TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland,
Technical Report TR-2263, June 1989

SEW Proceedings
348 SEL-94-006

8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development," IEEE

Software, January 1990

IBasili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution and

Resource Estimation Problems?," Journal of Systems and Software, February 198 l, vol. 2, no. 1

9Basili, V. R., G. Caldiera, and G. Cantone, "A Reference Architecture for the Component

Factory,"ACM Transactions on Software Engineering and Methodology, January 1992

10Basili, V., G. Caldiera, F. McGarry, et al., "The Software Engineering Laboratory--An

Operational Software Experience Factory," Proceedings of the Fourteenth International

Conference on Software Engineering (ICSE 92), May 1992

1Basili, V. R., and K. Freburger, "Programming Measurement and Estimation in the Software

Engineering Laboratory," Journal of Systems and Software, February 1981, vol. 2, no. 1

12Basili, V., and S. Green, "Software Process Evolution at the SEL," IEEE Software, July 1994

3Basili, V. R., and N M. Panlilio-Yap, "Finding Relationships Between Effort and Other

Variables in the SEL," Proceedings of the International Computer Software and Applications

Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in the SEL

Environment, University of Maryland, Technical Report TR- 1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical

Investigation," Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Software

Engineering Laboratory," Proceedings of the ACM SIGMETRICS Symposium�Workshop:

Quality Metrics, March 1981

3Basili, V. R., and C L. Ramsey, "ARROWSMITH-P--A Prototype Expert System for Software

Engineering Management," Proceedings of the IEEE/A/IITRE Expert Systems in Government

Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of Maryland,

Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Development,"

Proceedings of the Workshop on Quantitative Software Models for Reliability, Complexity, and

Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals and

Environments," Proceedings of the 9th International Conference on Software Engineering,

March 1987

5Basili, V. R., and H. D. Rombach, "TAME: Tailoring an Ada Measurement Environment,"

Proceedings of the Joint Ada Conference, March 1987

SEL-94-006
SEW Proceedings 349

5Basili, V. R., and H. D. Rombach, "TAME: Integrating Measurement Into Sottware

Environments," University of Maryland, Technical Report TR- 1764, June 1987

6Basili, V. R., and H D. Rombach, "The TAME Project: Towards Improvement-Oriented

Software Environments," IEEE Transactions on Software EngTneering, June 1988

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A Reuse-

Enabling Software Evolution Environment, University of Maryland, Technical Report TR-2158,
December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: Model

Based Reuse Characterization Schemes, University of Maryland, Technical Report TR-2446,
April 1990

9Basili, V. R., and H D. Rombach, "Support for Comprehensive Reuse," Software Engineering
Journal, September 1991

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Characteristic

Software Metric Set," Proceedings of the Eighth International Conference on Software

Engmeering. New York: IEEE Computer Society Press, 1985

Basili, V R., and R W. Selby, "Comparing the Effectiveness of Software Testing Strategies,"

IEEE Transactions on Software Engineering, December 1987

?Basili, V. R, and R W. Selby, Jr, "Four Applications of a Software Data Collection and

Analysis Methodoio_,," Proceedings of the NA TO Advanced Stud)/' Institute, August 1985

5Basili, V R, and R. Se[by, "Comparing the Effectiveness of Software Testing Strategies," IEEE

Transactions on So[tware Engineering, December 1987

9Basili, V R.. and R W. Selby, "Paradigms for Experimentation and Empirical Studies in

Software Engineering," Reliabiltt)' Engineering and 5_vstem Safety, January 1991

4Basili, V. R, R W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software Engineering,"

IEEE Transactions on Software Engineering, July 1986

2Basili, V. R, R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across

FORTRAN Projects," IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M Weiss, A Methodology for Collecting Valid Software Engineering Data,

University of Maryland, Technical Report TR- 1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering

Data," IEEE Transactions on Software Engineering, November 1984

IBasili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objectives,"

Proceedings of the Fifteenth Annual Conference on Computer Personnel Research, August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment,"

Proceedings of the Software Life Cycle Management Workshop, September 1977

SEW Proceedings 3 50 S EL-94-006

1Basi|i, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Laboratory,"

Proceedings of the Second Software Life Cycle Management Workshop, August 1978

1Basili, V. R., and M. V Zelkowitz, "Measuring Software Development Characteristics in the

Local Environment," Computers and Structures, August t 978, vol. 10

Basili, V. R., and M V. Zelkowitz, "Analyzing Medium Scale Software Development,"

Proceedings of the Third International Conference on Software Engineering New- York LEEE

Computer Society Press, 1978

Bassman, M. J., F. McGarry, and R. Pajerski, Software/t,teasuremem Guidebook, NASA-GB-

001-94, Software Engineering Program, July 1994

9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Implementation

Concepts," Proceedings of Tri-Ada 1991, October 1991

10Booth, E. W., and M. E Stark, "Software Engineering Laborato_' Ada Performance

Study-M_esults and Implications," Proceedings of the Fourth Annual NASA Ada User's

Symposium, April 1992

10Briand, L. C., and V R. Basili, "A Classification Procedure for the Effective Management of

Changes During the Maintenance Process," Proceedings of the 1992 /Et':F, Conference opt

Software Maintenance (CSM 92), November 1992

10Briand, L C., V R. Basili, and C J Hetmanski, "Providing an Empirical Basis for Optimizing

the Verification and Testing Phases of Software Development," Proceedings qf the 7bird IE!S(

International Symposium on Software RehabifiO; Engineering (ISSRt:2 92), October 1992

l lBriand, L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with

Optimized Set Reduction for Identifying High Risk Sofm, are Comt_onents, University of

Maryland, Technical Report TR-3048, March 1993

12Briand, L. C., V. R. Basili, Y. Kim, and D R. Squire, "A Change Analysis Process to

Characterize Software Maintenance Projects", Proceedings of the International Conference on

Software Maintenance, September 1994

9Briand, L. C., V. R Basili, and W. M. Thomas, A Pattern Recognition Approach for Software

Engineering Data Analysis, University of Maryland, Technical Report TR-2672, May 1991

11Briand" L. C., S. Morasca, and V R. Basili, "Measuring and Assessing Maintainability at the

End of High Level Design," Proceedings of the 1993 IEEE Conference on Software Maintenance

(CSM 93), November 1993

12Briand, L., S. Morasca, and V. R. Basili, Defining and Validationg High-Level Design Metrics,

University of Maryland, Technical Report TR-3301, June 1994

SEW Proceedings 351
SEL-94-006

l lBriand, L. C., W. M. Thomas, and C. J. Hetmanski, "Modeling and Managing Risk Early in

Software Development," Proceedings of the Fifteenth International Conference on Software
Engineering (1CSE 93), May 1993

SBrophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-Oriented

Design Methods," Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the

Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada Technical
Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size," Computer
Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estimation,"
Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D. N., "A Software Technology Evaluation Program," Annals do XIGII Congresso
Nacional de lnformatica, October 1985

5Card, D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," ,Journal of Systems
and Software, 1987

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," `journal of Systems
and Software, June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical Study of Software Design

Practices," 1EEE Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L Jordan, "A Software Engineering View of

Flight Dynamics Analysis System," Parts I and II, Computer Sciences Corporation, Technical
Memorandum, February 1984

Card, D. N, Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN M "odules,
Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D. N., F. E. McGarry, and G. T. Page, "Evaluating Software Engineering Technologies,"
1EEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization,"

Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

1Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engineering

Methodologies," Proceedings of the Fifth International Conference on Software EngTneertng.
New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for Assessing
So/_ware Prototypes," ACM Software Engineering Notes, July 1986

SEW Proceedings 3 52 SEL-94-006

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through Dynamic

Variables," Proceedings of the Seventh International Computer Software and Applications

Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of Maryland,

Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada Project,"

Proceedings of the 1988 Washington Ada Symposium, June 1988

5Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical Association

of Software Data, University of Maryland, Technical Report TR-1848, May 1987

6Jeffery, D. R., and V. R Basili, "Validating the TAME Resource Data Model," Proceedings of

the Tenth International Conference on Software Engineering, April 1988

l lLi, N. R., and M. V. Zelkowitz, "An Information Model for Use in Sofcware Management

Estimation and Prediction," Proceedings of the Second International Conference on Information

Knowledge Management, November 1993

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering, University

of Maryland, Technical Report TR- 1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Sot_ware Engineering Information

Bases From Software Process and Product Specifications," Proceedings of the 22nd Annual

Hawaii International Conference on System Sciences, January 1989

5McGarry, F. E., and W. W. Agresti, "Measuring Ada for Sot_ware Development in the Software

Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii International

Conference on System Sciences, January 1988

7McGarry, F., L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production SoRware

Environment," Proceedings of the Sixth Washington Ada Symposium (WADAS), June 1989

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource Quality on

the Sot_ware Development Process and Product," Proceedings of the Hawaiian International

Conference on System Sciences, January 1985

3Page, G., F. E. McGarry, and D. N Card, "A Practical Experience With Independent

Verification and Validation," Proceedings of the Eighth International Computer Software and

Applications Conference, November 1984

12porter, A A, L. G Votta, Jr., and V. R. Basili, Comparing Detection Methods for Software

Requirements Inspections: A Replicated Experiment, University of Maryland, Technical Report

TR-3327, July 1994

5Ramsey, C. L., and V. R. Basili, "An Evaluation of Expert Systems for Software Engineering

Management," IEEE Transactions on Software Engineering, June 1989

SEW Proceedings 3 53
SEL-94-006

3Ramsey, J.,

Proceedings of the Eighth International Conference on Software Engineering.
IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on

Maintainability," IEEE Transactions on Software Engineering, March 1987

8Rombach, H. D, "Design Measurement: Some Lessons Learned," IEEE Software, March 1990

9Rombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth Journal

of Information and Software Technology, January/February 1991

6Rombach. H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An Industrial

Case Study," Proceedings From the Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis for

Generating Customized SE Information Bases," Proceedings of the 22nd Annual Hawaii

International Conference on System Sciences, Januau, 1989

7Rombach, H. D., and B T. Ulery, Establishing a Measurement Based Maintenance

Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical Report
TR-2252_ May 1989

l°Rombach, H. D., B. Y Ulery, and J D Valett, "Toward Full Life Cycle Control: Adding

Maintenance Measurement to the SEL," Journal of S)'stems and Software_ May 1992

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Adam" Proceedings of the 1987
/'_v ,O.,

. nference on ObJect-Oriented Programming Systems, Languages, and Applications, October
1987

5Seidewitz, E., "General Object-Oriented Software Development_ Background and Experience,"

Proceedings of the 21st Hawa# International Conference on System Sciences, January 1988

6Seidewitz, E, "General Object-Oriented Software Development with Ada: A Life Cycle

Approach," Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X," Ada
Letters, March/April 1991

l°Seidewitz, E., "Object-Oriented Programming With Mixins in Ada," Ada Letters, March/April
1992

12Seidewitz, E, "Genericity versus Inheritance Reconsidered: Self-Reference Using Generics,"

Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1994

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Development

Methodology," Proceedings of the First International Symposium on Ada for the NASA Space
Station, June 1986

and V. R Basili, "Analyzing the Test Process Using Structural Coverage,"

New York:

SEW Proceedings 354 SEL-94-006

9Seidewitz, E., and M. Stark, "An Object-Oriented Approach to Parameterized Software in Ada,"

Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the Seventh

Washington Ada Symposium, June 1990

]]Stark, M, "Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,"

Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and

Applications, September 1993

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,"

Proceedings of TRI-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle," Proceedings

of the Joint Ada Conference, March 1987

lOStraub, P. A., and M. V. Zelkowitz, "On the Nature of Bias and Defects in the Software

Specification Process," Proceedings of the Sixteenth International Computer Software and

Applications Conference (COMPSAC 92), September 1992

8Straub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for Ada,"

Proceedings of the Tenth International Conference of the Chilean Computer Science Society,

July 1990

7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Software Management

Cycle Into the TAME System, University of Maryland, Technical Report TR-2289, July 1989

10Tian, J., A. Porter, and M V Zelkowitz, "An Improved Classification Tree Analysis of High

Cost Modules Based Upon an Axiomatic Definition of Complexity," Proceedings of the Third

IEEE International Symposium on Software Reliability Engineering (ISSRE 92), October 1992

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Development Data,

Data and Analysis Center for Software, Special Publication, May 1981

10Valett, J. D., "Automated Support for Experience-Based Software Management," Proceedings

of the Second Irvine Software Symposium (1SS _92), March 1992

5Valett, J. D., and F. E. McGarry, "A Summary of Sot_ware Measurement Experiences in the

Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii International

Conference on System Sciences, January 1988

3Weiss, D. M, and V. R. Basili, "Evaluating Software Development by Analysis of Changes:

Some Data From the Software Engineering Laboratory," IEEE Transactions on Software

Engineering, February 1985

5Wu, L., V. R. Basili, and K Reed, "A Structure Coverage Tool for Ada Software Systems,"

Proceedings of the Joint Ada Conference, March 1987

SEW Proceedings 3 55
SEL-94-O06

IZelkowitz, M. V., "Resource Estimation for Medium-Scale Soflavare Projects," Proceedings of

the Twelfth Conference on the Interface of Statistics and Computer Science. New York: IEEE
Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection

Research," Empirical Foundations for
November 1982

and Evaluation for Experimental Computer Science

Computer and Information Science (Proceedings),

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," Proceedings of

the 26th Annual Technical Symposium of the Washington, D.C., Chapter of the A CM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal of Systems
and Software, 1988

8Zelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With Syntax

Editors," Information and Software Technology, April 1990

SEW Proceedings 356 SEL-94-006

NOTES:

1This article also appears

July 1982.

2This article also appears

November 1983.

3This article also appears

November 1985.

4This article also appears

November 1986.

5This article also

November 1987.

6This article also

November 1988.

7This article also

November 1989.

8This article also

November 1990.

m SEL-82-004.

m SEL-83-003.

m SEL-85-003

m SEL-86-004

appears m SEL-87-009.

appears m SEL-88-002.

appears m SEL-89-006

appears m SEL-90-005

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:9This article also appears m SEL-91-005

November 1991.

10This article also appears in SEL-92-003, Collected Software Engineering Papers."

November 1992.

11This article also appears in SEL-93-001, Collected Software Engineering Papers:

November 1993.

12This article also appears in SEL-94-004, Collected Software Engineering Papers."

November 1994.

Volume 1,

Volume 11,

Volume 111,

Volume IV,

Volume V,

Volume VI,

Volume VII,

Volume VIII,

Volume 1X,

Volume X,

Volume ,El,

Volume)GI,

SEL-94-006
SEW Proceedings 3 57

,_Lf" ltW

REPORT DocUMENTATION
Send

"Headquarters

burde_

Contracl

Form Approved
OMB No. 0704-0188

his col_ectio_ o|

215 jefferson Davis HighwaY, Suite

Proceedings of the Nineteenth Annual Software Engineering Workshop

552

AtrrNOR(S)

Software Engineering Laboratory

Software Engineering Branch

Code 552
Goddard Space Flight Center

Greenbelt, Maryland

NASA Aeronautics and Space Administration

Washington, D.C. 20546-0001

REPORT NUMBER

SEL-94-006

AGENCYREPORTNUMBER

CR- 189411

Unclassified-Unlimited

Subject Category'. 61 for AeroSpace Information,
Report is available from the NASA Center

800 (Maximtan 200 words) is an organization sponsored by NASA/GSFC and created to investigatetheof an_lications software. The goals of

• • when applied to the devel_°pment ent; (2)to measure the effects£fSoftware Engineering Laboratory (SEL)
The e en ineermg tecnnmog_c_ rocess in the GSFC envt.run,,_ ._,,1,, _u cessfui developmc-"

effecuveness of softwar_o g software development P __._ _aa t identify and tlaen to ,_t,v.: __c
SEL are (1) to unde_tand _?A ,,,oriels on this process; at,,, _-._ .o are recorded in the Software Engineering Laboratory

the • • • - ,-ols a,u,,.v-
various methodotogtes, _" '
practices. The activities, findings, and recommendations of the SEL
Series, a continuing series of reports that includes this document.

Software Engineering, Software Measurement, Data Collection

DE

PAGE
Standard Form 298 (Rev. 2-89)

NSN 7540.0%280-5500

